
A Cognitive Framework for Modeling Coincident

Software Faults: An Experimental Study

Presenter: Fuqun Huang, PhD

Assistant Professor, huangf2@wwu.edu

Authors: Bo Zhao2, You Song2, Wenhao Xu2, and Fuqun Huang1,*

1 Western Washington University, Department of Computer Science, Bellingham, USA

2 Beihang University, School of Software, Beijing, China

SafeComp 2023
Sep. 19-22, Toulouse, France

2

Results

Experimental Study

The Cognitive Framework for Software Coincident Defects

Introduction

Overview

Concepts

Discussions

Introduction

❑ N-version programming as a strategy for fault
tolerance

Different from Hardware?

❑ The degree to which a software system
tolerate faults largely depends on the fault
diversity between multiple versions.

3

Introduction (con’t)

❑ How to achieve software fault diversity?

• What’s software in nature？

• How are software faults caused?

4

To Err Is Human!

Introduction (con’t)

❑ What are the human factors that contribute to
software fault diversity?

5

Addressed today!

Concepts

❑ Fault

An incorrect or missing step, process, or data definition in a computer

program.

❑ Error

An erroneous human behavior that leads to a software fault.

❑ Occurrences (OC) of a fault

The number of programmers in an N-version programming study who

introduced that fault.

❑ Coincident Fault

A fault whose Occurrences is two or more in N-version programming, i.e.,

that was introduced by at least two programmers.

6

Concepts (con’t)

❑ Prevalence of Occurrence (POC)

The percentage of programmers who introduced the fault i, defined as:

POCi= OCi/P (1)

where P is the total number of programmers who submitted code for the

task.

❑ Larger POC→ more common the fault is.

7

8

Results

Experimental Study

The Cognitive Framework for Software Coincident Faults

Introduction

Overview

Concepts

Discussions

Cognitive Framework for
Coincident Faults (CognFCF)

❑ Rasmussen’s Performance Framework

• Skill-based (SB) performance follows from the statement of an intention, “rolls

along” automatically without conscious control. Skill-based activities in

programming include typing a text string, compiling a program by pressing a

button in the programming environment.

• Skill-based errors are the human errors occurring in skill-based performances.

In software development, typos and entering a wrong letter which looks similar to

the correct one (e.g. taking 0 for o) are typical examples of skill-based errors In

software development, typos and entering a wrong letter which looks similar to

the correct one (e.g. taking 0 for o) are typical examples of skill-based errors

9

Example from Huang & Strigini (2023) :HEDF: A Method for Early Forecasting Software Defects

Based on Human Error Mechanisms, IEEE Access 11, 3626-3652

CognFCF (con’t)

❑ Rasmussen’s Performance Framework

• Rule-based (RB) performance is applicable for tackling familiar

problems. It is typically controlled by stored rules that have been derived

from a person’s experiences. In programming, there are many rule-

based performances, such as printing of a string line, and defining a

variable in one’s familiar programming language.

• Rule-based errors are the errors occurring in rule-based performances.

10

Example from Huang & Strigini (2023) :HEDF: A Method for Early Forecasting Software

Defects Based on Human Error Mechanisms, IEEE Access 11, 3626-3652

CognFCF (con’t)

❑ Rasmussen’s Performance Framework

• Knowledge-based (KB) performance comes into play when

individuals face novel situations, and no rules are available from

previous experiences. At this level, actions must be planned using an

analytical process. Errors at this level can arise from resource limitations

and incomplete or incorrect knowledge.

• Knowledge-based errors are human errors that occur in knowledge-

based performances.

11

Example from Huang & Strigini (2023) :HEDF: A Method for Early Forecasting

Software Defects Based on Human Error Mechanisms, IEEE Access 11, 3626-3652

CognFCF (con’t)

❑Cross-level Errors: Post-Completion Error

Post-Completion Error

SUPPOSE Task A ={Task A.1, Task A.2};

IF <Task A.1 is the main subtask>

 AND

 <Task A.2 is not a necessary condition

 to Task A.1>

 AND

<Task A.2 is the last step of Task A >;

THEN Humans tend to omit Task A.2.

The Jiong programming task

Print a series of the Chinese word

 jiong at a n y nth nested structure

(1 n 7), and print a blank line after

each word.

Example output for a group of three

words (n=1, 2, 3, respectively):

＋ ＋

 ＋ ＋

 ＋ ＋

＋ ＋ ＋ ＋ ＋ ＋

＋ ＋

 ＋ ＋

＋ ＋ ＋ ＋

＋ ＋

 ＋ ＋

 ＋ ＋

 ＋ ＋

＋ ＋ ＋ ＋ ＋ ＋ ＋ ＋

Fault: The blank

line after the

“jiong” is missing

CognFCF (con’t)

❑The Cognitive Framework for Coincident Faults

?

Requirement 1

Requirement 2

 .

Requirement Scenario

N

Requirement

Specifications

Knowledge-based

Performances

Rule-based Performances

Skill-based Performances

Cross

-level

Perfo

rman

ces

Coincident

Defects

Programmer

Group 1
Programmer

Group N

14

Results

Experimental Study

The Cognitive Framework for Software Coincident Faults

Introduction

Overview

Concepts

Discussions

Experimental Study

❑ Research Questions (RQ) and Hypotheses (H)

RQ 1: Do the likelihoods of a fault being a coincident fault differ across various

cognitive levels?

• H1: The likelihoods of a fault being coincident are equal across the Skill-based,

Rule-based, Knowledge-based, and Post-completion levels.

RQ 2: Do the Occurrences of coincident faults at skill-based, rule-based,

knowledge-based, and post-completion errors differ?

• H2.1: The OC of skill-based faults is equivalent to that of rule-based faults.

• H2.2: The OC of skill-based faults is equivalent to that of knowledge-based

faults.

• H2.3: The OC of skill-based faults is equivalent to that of post-completion faults.

• H2.4: The OC of rule-based faults is equivalent to that of knowledge-based faults.

• H2.5: The OC of rule-based faults is equivalent to that of post-completion faults.

• H2.6: The OC of knowledge-based faults is equivalent to that of post-completion

faults.

15

Experimental Study (con’t)

❑ Experiment Setting

• Programming Task: Bubble Sort Problem

• The Participants: 200 undergraduates who have completed C

programming course

• Data Collection: Online Judge (OJ) system

• Data Analysis: Code inspection + Cognitive-Level Classification by two

professors independent of this study

16

Fault
ID

Fault Description OC CL OJ

2 Data overflow 122 RB WA
4 The variable is not defined before it is used. 3 RB WA
7 Mistook the %d\n for \n%d . 1 SB PP
19 Ignored the rule that the smaller number comes first when the distances are equal. 66 PCE WA

34
In the Bubble Sort algorithm, only the adjacent elements of the array holding the value
(e.g. value[i] and value [i-1]) are exchanged, whereas the adjacent elements of the
distance array are not exchanged (should be exchanged).

15 KB WA

61 == is written as = by mistake. 11 RB CP
62 A statement is followed by an extra '2'. 1 SB CP
64 A } is missing. 5 PCE CP
OC: Occurrences; CL: Cognitive Level; OJ: Online Judging feedback; SB: Skill-based error; RB: Rule-based error; KB: Knowledge-

based error; PCE: Post-Completion Error

Table 1. Sample of Data

Results

❑ H1: The likelihoods of a fault being coincident are equal across the

Skill-based, Rule-based, Knowledge-based, and Post-completion levels.

• Chi-square test

• H1 is rejected based on the results of the chi-square test on the data of

the Bubble Sort Problem, χ2 (df=3, N = 70) =22.39, p = 0.000.

17

Table 2. The contingency table for Chi-square test

Cognitive levels
Whether coincident

Total
Non-coincident Coincident

Skill-based errors 16 0 16
Rule-based errors 10 18 28
Knowledge-based errors 13 9 22
Post-completion Errors 0 4 4
Total 39 31 70

Finding A: The proposed CognFCF has overall captured the cognitive factors

underlying fault diversity, as the likelihoods of a fault being coincident at various

cognitive levels in CognFCF are statistically significant different.

Results (con’t)

18

OCs Rule-based Knowledge-

based

PCE

Skill-based H2.1 is rejected

U=368.00,

N=44, p=0.000

H2.2 is rejected

U=248.00, N=38,

p=0.004

H2.3 is rejected

U=64.00,

N=20, p=0.000

Rule-based H2.4 is retained

U=237.50, N=50,

p=0.145

H2.5 is retained

U=81.50,

N=32, p=0.137

Knowledge

-based

H2.6 is rejected

U=73.00,

N=22, p=0.027

❑ H2.1-2.6

Mann-Whitney test, a nonparametric test used to examine whether the means of

two populations differ significantly.

Finding B

Finding C

Finding D

Results (con’t)

19

Finding B: The occurrences of skill-based faults are significantly lower than that of

faults at any other cognitive levels. We identified a total of 16 faults at skill-based

performances in our experiment; all of them were unique faults (Occurrence=1).

Finding C: The occurrences of rule-based faults are not significant different from

that of knowledge-based and post-completion faults, however, programmers are

most likely to introduce coincident faults in rule-based performances.

Finding D: Once a post-completion fault is introduced by a programmer, it is most

likely to be repeated by another programmer (the conditional probability is the

highest).

Discussions

❑ Implications

• Strategies for Avoiding Coincident Faults

20

 Forced diversity

Preventative

strategies--change

requirements

representation

formats)

Natural independent

development

Diversity-

Seeking

strategies

Requirement 1

Requirement 2

 .

Requirement Scenario

N

Requirement

Specifications

Knowledge-based

Performances

Rule-based Performances

Skill-based Performances

Post-Completion

Scenarios

A new strategy for

assigning

programmers

Programmer

Group 1

Programmer

Group N

Conclusion

21

❑ Contributions

• Proposed the first cognitive framework for modeling coincident faults

• Designed and conducted an experimental study to validate the

framework

• Results show that the framework has overall captured the cognitive

factors underlying fault diversity.

❑ Future Studies

• Designing and evaluating the strategies for avoiding coincident faults.

• Formally model the prevalence of errors, the relationships between

different types of errors and faults.

Thanks!

Fuqun Huang

https://cs.wwu.edu/huangf2

huangf2@wwu.edu

Questions?

