
A Taxonomy of Software Defect Forms for

Certification Tests in Aviation Industry

Presenter: Fuqun Huang, PhD

Assistant Professor, huangf2@wwu.edu

Authors: Fuqun Huang1, Bing Huang2, Yiqun Wang3, and Yichen Wang4

1 Western Washington University, Department of Computer Science, Bellingham, USA
2 Nanyang Technological University, School of Computer Science and Engineering, Singapore
3 Antares Testing LLC, Beijing, China
4 Beihang University, School of Software, Beijing, China

SafeComp 2023
Sep. 19-22, Toulouse, France

2

Validation and Assessment

Methodologies

Motivation

Outline

Definitions

Discussions

The Taxonomy

Motivation (con’t)

❑ A good defect classification is necessary for
every organization

• Necessary for communication between developers,
code reviewers, quality assurance engineers

• Process improvement, e.g., defect prevention

3

Motivation (con’t)

❑What is a “good” defect taxonomy

• Functionality: capture “what’s wrong” with a piece of
code or document

• Inter-coder reliability: the degree to which different
people classify a defect into the same category

❑What features determine inter-coder reliability

• Orthogonality ↑

• Complexity ↓

4

Motivation (con’t)

❑ A practical need in the Chinese Aviation industry

• A rigorous process for assuring software quality

• Software certification tests are conducted by qualified and
independent third-party software testing centers

• A defect taxonomy that should be easily understood and made
consensus between multiple stakeholders, e.g. user
representatives, developers, project managers, domain
experts, and software certification testing engineers.

❑Current classification

• Documentation, Program, Design, and Others.

❑Why not the widely reported classifications, e.g.
ODC?

5

Definitions

❑ Defect

An incorrect or missing step, process, or data definition in software,

including computer programs and documentation (adapted from the

definition of “fault” in the IEEE Standard Glossary of Software Engineering

Terminology [8]).

❑ Defect Form (DF)

The way how a snippet of software (including computer programs and

documentations) is being a defect. Note that the Defect Form here is not

the same as the “Defect Type” concept commonly used in software

engineering, e.g. in “Orthogonal defect classification” [1]. Defect Form

describes “what” a defect is, in more detail than “Defect Type”.

6

7

Validation and Assessment

Methodologies

Motivation

Outline

Definitions

Discussions

The Taxonomy

Methodologies

❑ Predetermined vs. Finding patterns in real data

❑ Grounded Theory

• Grounded Theory, initially developed by Glaser and Strauss [9], is a

methodology used to build new theories based empirical data. The

methodology involves a set of strategies

• Inductive and iterative process to generate a new theory from empirical

data

• Open Coding

8

Methodologies (con’t)

❑ The Process

9

? Applying

Software System

Certification Project 1

Software System

Certification Project 2

 .

Software System

Certification Project

10

Defects

Data

Set A

Defect Form 1

Defect Form 2

 .

Defect Form 15

Coder

Coding

Software System

Certification Project 11

Software System

Certification Project 12

 .

Software System

Certification Project 19

Defects

Data

Set B

Methodologies (con’t)

❑ The Data

10

Software LOC
Defects found in certification tests

Critical Major Regular Minor

1 Flight management CPU 75572 0 1 5 0

2 Flight Management MIO 9692 1 0 6 0

3 Inertial Navigation Software 26406 0 1 13 0

4 Inertial Attitude Software 18361 0 3 1 2

5 Anti-jamming all-in-one 21683 0 0 6 9

6 Radio Altimeter Software 7572 1 2 0 0

7 Task management software 20353 0 2 35 3

8 Power management 21947 0 4 3 0

9 Integrated monitoring 49450 0 0 18 3

10 Portable Maintenance Aid 27314 0 3 2 0

Total 278350
2 16 89 17

124

11

Validation and Assessment

Methodologies

Motivation

Outline

Definitions

Discussions

The Taxonomy

The Taxonomy

12

Defect form
Number of

defects
Percentage

DF6-Inconsistency between program function and

requirements specification (II) (fixed by changing the program)
35 28%

DF5-Inconsistency between requirements specification and

program function (I) (fixed by changing requirements documents)
19 15%

DF1-Useless requirements specification 13 10%

DF9-Algorithm error 11 9%

DF12-Exception handling Error 10 8%

DF11-Missing function 10 8%

DF8-Calculation error 9 7%

DF2-Missing requirements specification 8 6%

DF3-Inappropriate organization of the requirement

specifications
2 2%

DF10-Assignment error 2 2%

DF13-Annotation error 2 2%

DF7-Ambiguous requirements specification 2 2%

DF4-Incorrect requirements specification 1 1%

Total 124 100%

❑ Thirteen Defect forms

13

Validation and Assessment

Methodologies

Motivation

Outline

Definitions

Discussions

The Taxonomy

Validation

❑ Participants

5 experienced software certification testing engineers, all of whom held team

leader positions

❑ Procedures

➢ The participants used the defect form list to reclassify the defects they

had found in the projects they were actively involved in.

➢ We also added another category, DF14-Others, to the list to identify any

defects that could not be classified using the 13 forms.

➢ They were encouraged to raise any issues if there were any unclear

definitions or any defects that could not be classified by the taxonomy.

➢ We asked them whether they had encountered any defect that could be

classified by more than one defect form to evaluate the degree of mutual

exclusivity between the defect forms.

14

Validation (con’t)

❑ The Validation Data

15

Software systems Critical Major Regular Minor Total

CJGZKZ 4 0 6 0 10

JZCL 5 0 0 0 5

ZKGL 9 0 16 6 31

TXCL 2 0 5 0 7

HJGL 1 0 13 1 15

BFCC 3 0 2 1 6

IISS 0 4 1 2 7

DXX 5 0 5 5 15

JT 7 0 63 3 73

Total 36 4 111 18 169

Validation (con’t)

❑ The Validation Results

16

Defect
Forms Doc Prog. Other Total #

#%

DF2 3 - - 3 1.8

DF5 64 - - 64 37.9

DF6 2a 38 - 40 23.7

DF8 - 2 - 2 1.2

DF9 - 4 - 4 2.4

DF10 - 30 - 30 17.8

DF11 - 8 - 8 4.7

DF12 - 9 - 9 5.3

DF13 - - 6 6 3.6

DF14 1 2 - 3 1.8

Total 70 93 6 169 100

a. Comments in the program are inconsistent with requirements

Assessment

❑ Completeness

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠 =
σ1
13𝐷𝐹𝑖

σ1
14𝐷𝐹𝑖

× 100% (1)

where DF14 represents a defect was assigned to “other”. That is, Completeness

is estimated based on the number of defects assigned to the 13 defined forms

out of all defects.

• The taxonomy effectively covered 98% (166/169) of defects identified in

the nine software certification projects.

• The participants utilized only 9 out of the 13 available defect forms

❑ Clarity and non-overlapping

• No issue was raised on these matters by the participants.

17

Discussions

18

❑ Contributions

• This paper proposed a new concept “defect form” to describe the patterns of

defects found in certification tests in the Chinese aviation industry.

• We developed a taxonomy consisting of 13 defect forms derived from 10

software systems using Grounded Theory.

• The taxonomy were applied and validated by 5 independent professional

certification testing engineers on another 9 software systems certification

projects.

• Results show that nine defect forms were able to describe 98% defects.

Fuqun Huang

https://cs.wwu.edu/huangf2

huangf2@wwu.edu

Discussions

