A Low-cost Strategic Monitoring Approach for Scalable and Interpretable Error Detection in Deep Neural Networks

Florian Geissler¹, Syed Sha Qutub¹, Michael Paulitsch¹, and Karthik Pattabiraman²

Intel Labs, Germany
 University of British Columbia, Vancouver, Canada

SafeComp 2023, Toulouse, France

Problem Statement

No fault



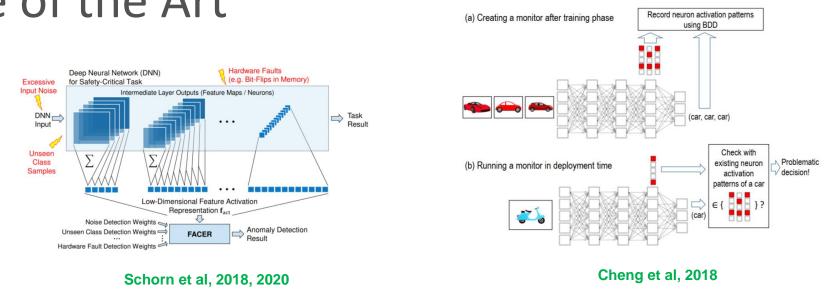
DNN output

Memory_fault: neurons, bit 1

TP: True positives (green), **FP**: False positives (orange), **FN**: False negatives (blue)

- Complex DNNs are known to be sensitive to silent data corruption (SDC) under specific faults (noise, hardware, etc.)
- Need to protect the DNN at runtime against diverse critical faults (while ignoring non-critical faults)
- Concept: Monitor intermediate activations to classify error patterns
- Interpret the patterns to find best correction method and increment user trust

State of the Art



[1] Cheng et al., 2018
 [2] Ahuja et al., 2019
 [3] Chen et al., 2020
 [4] Hoang et al., 2019
 [5] Schorn et al., 2018
 [6] Schorn et al., 2018
 [7] Huang et al., 2018

Goals of our method:

Address diverse fault patterns with a single detector

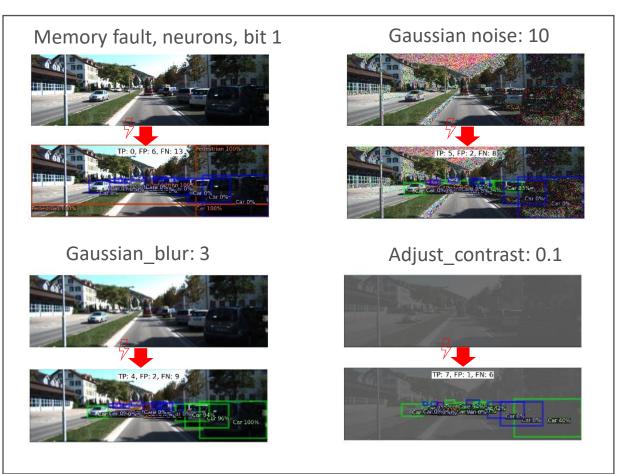
Efficient in compute and memory

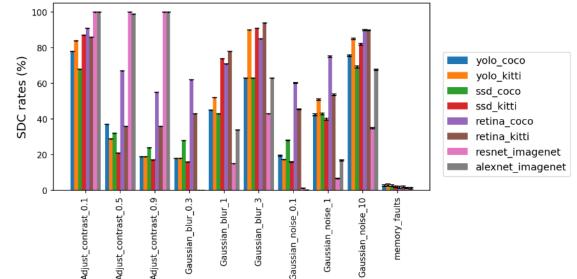
Current methods have at least one of the following shortcomings:

- Use methods that are limited to single-label problems (e.g., associate error pattern with specific outcome class) [1,2]
- Use global thresholds for error classification that omit more subtle faults [3,4]
 Capture subtle and outlier fault
- Have in-transparent detector methods so that error patterns are not interpretable [5,6]
 Explainability
- Only address a single fault mode [7]
- Require significant compute or memory overhead [2, 5,6]

Universally applicable

Failure Modes and Models





- 3 input faults with 3 different magnitudes each + memory faults (average neurons and weights) = 10 fault modes
- SDC rate depends on model and dataset
 (8 different computer vision setups tested)
- Calibrate experiments to get equal statistical samples

Our key observation

Input

Convl

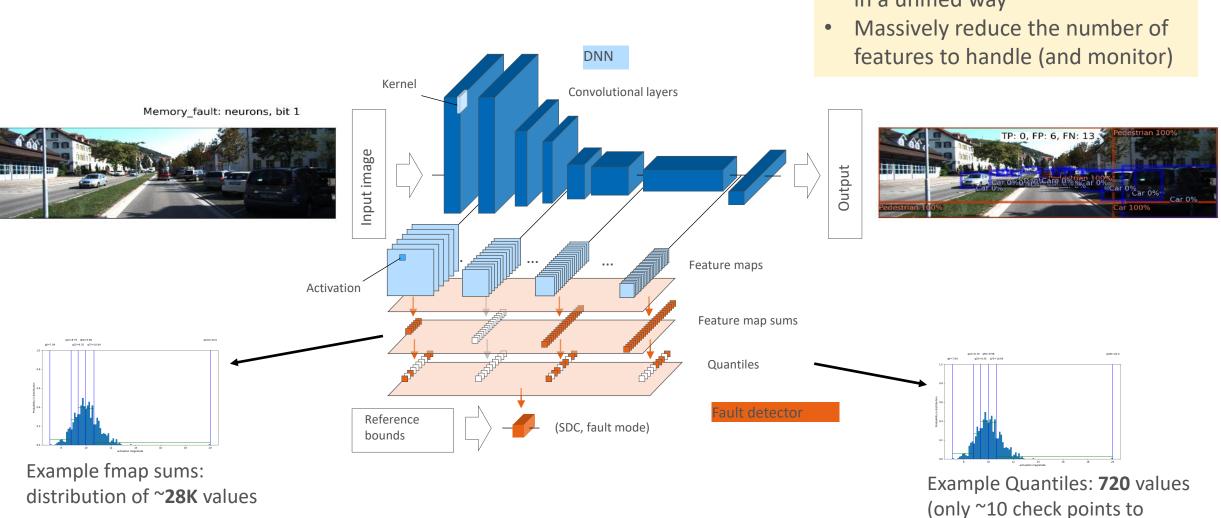
Conv2

Output

When SDC occurs, the topology of the feature maps in the affected layer typically changes as:

- 1. A few individual values get changed a lot = **peak shift** (seen for <u>memory faults</u>, large deviations in all subsequent layers)
- Many (all) values get changed slightly = bulk shift (seen for <u>input faults</u>, can become large deviations in subsequent layers)

→ Quantile markers capture **both** effects in a unified way



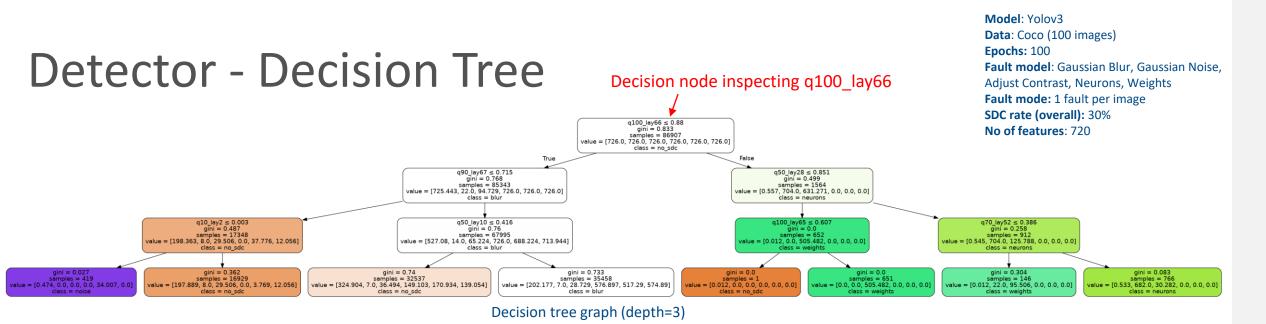
The method: Quantile Extraction

Note: Quantile extraction will

 Capture both peak and bulk shifts in a unified way

represent one layer)

intel



Prediction

Ground truth	Real\Predicted		No SDC	SDC						
			No SDC	Neurons	Weights	Blur	Noise	Contrast		
	No SDC	No SDC	26790	140	52	2950	85	0		
	SDC	Neurons	12	330	6	2	0	0		
		Weights	17	7	448	2	0	0		
		Blur	0	0	0	3534	0	317		
		Noise	37	2	0	2848	1235	0		
		Contrast	0	0	0	3314	0	677		

 Decisions based on quantile values are fully transparent

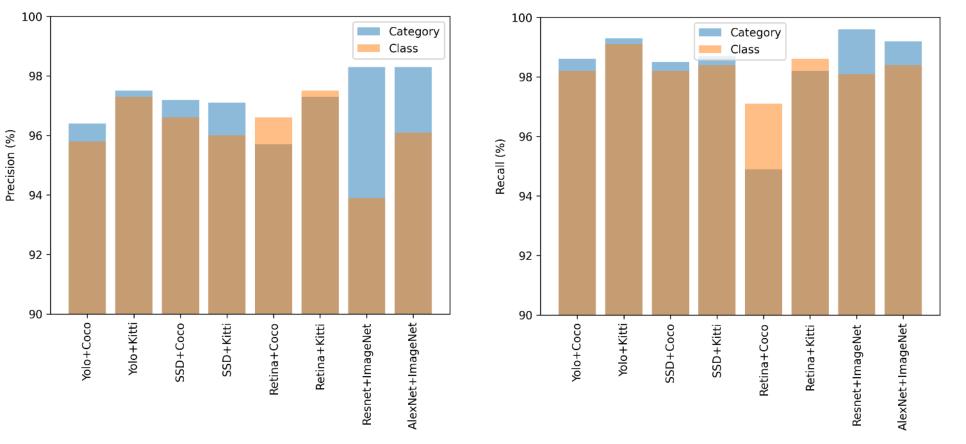
• Error classification improves with tree depth

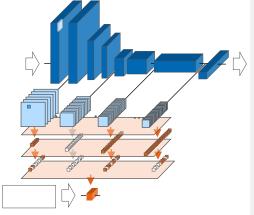
- Most confusions happen within input fault classes or input faults vs no SDC
- Error detection success **metric** can be varied depending on use case

Tree confusion matrix (depth=10)

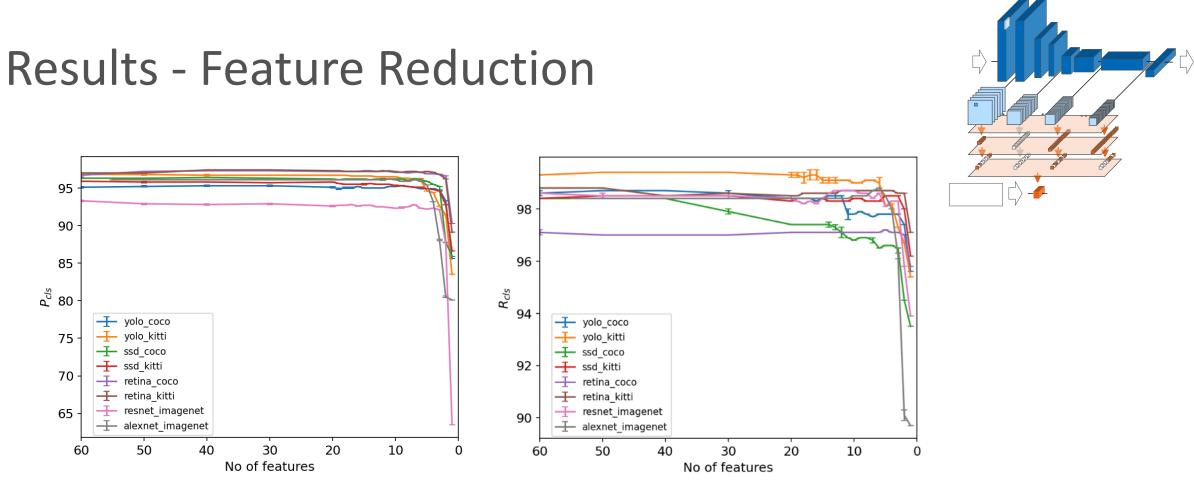
7

Results – Precision and Recall



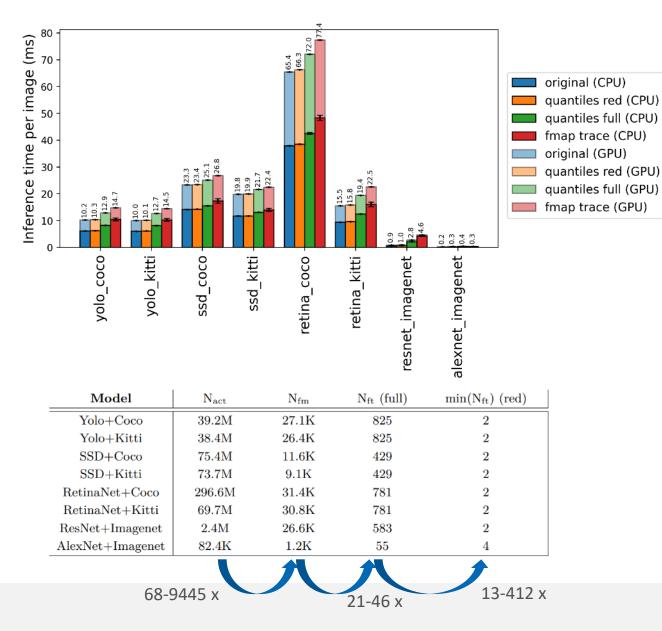


- Results are averages across all failure modes, per model
- We find P >= 94%, R>97% for class-wise metric (all confusions except exact class get penalized)
- We find P > 95%, R>=95% for category-wise metric (confusions within the same fault category input/memory/no_sdc do not get penalized)



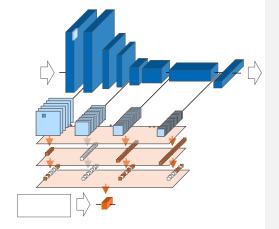
- We can **reduce** the number of monitored quantiles and layers significantly and still get very good results for precision/recall
- In most cases, 2-3 quantiles from 2-3 layers are enough to reach >95% of the original performance (with all quantiles and layers) → Save a lot of compute and memory!
- Quantile markers: Typically, a strategic marker in a late layer and one in the first half of the DNN works best.

Results - Overhead



- Quantile monitoring is faster than feature map tracing: Additional quantile operation but do not need to store large tensors
- Reducing to minimal model saves more computation. Only 0.3%-1.6% inference time overhead for object detection models
- Information compression ratio: Quantile operation compresses data by a factor of >20 x, feature reduction by another factor of >10-400 x.

Summary



- First method to address both hardware faults and input faults in a unified way
- Input and memory faults are associated with **bulk and peak activation shifts**, giving a unifying perspective on the dependability of DNNs
- Even for complex object detection networks, errors can efficiently be detected (P up to ~97%, R up to ~98%) even with quantile shifts in only a few layers (down to 2 layers)
- Method is low-cost, as high information compression incurs only low overhead (down to ~+0.3% in inference time)
- We identify **minimal sets of relevant features** for monitoring across models
- Detection with **algorithmically transparent components** such as decision trees

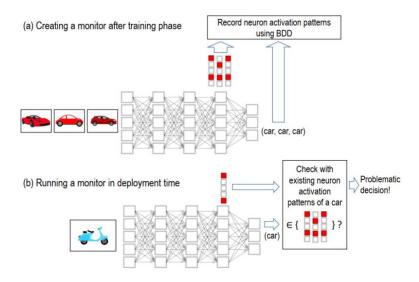
Problem statement

- Even complex DNNs are known to have robustness issues under specific faults (noise, hardware faults, etc.).
- Most critical are silent data corruption (SDC) errors!

TP: True positives, FP: False positives, FN: False negatives

- Goal: Error detection in two steps: 1) Monitor activation patterns, 2) Anomaly detection.
- Challenges: Design DNN error detectors that are
 - Efficient in performance and memory footprint
 - Can reliably identify SDC, and differentiate fault modes
 - Transparent to foster model explainability

State of the art - examples



Cheng et al, 2018: class activation vectors

Shortcomings: Assumes discrete outcome classes to form cluster patterns, does not generalize to any ML problem.

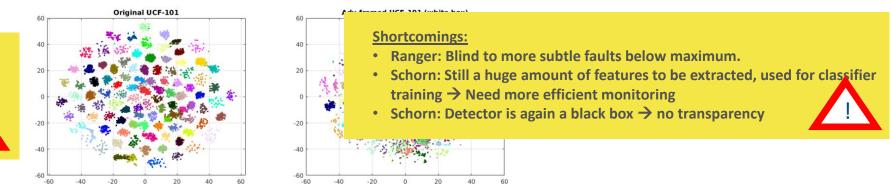
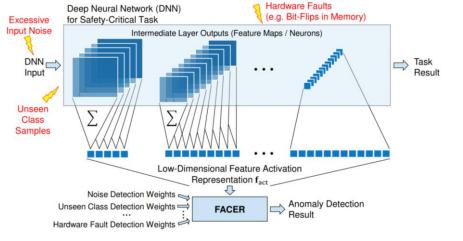


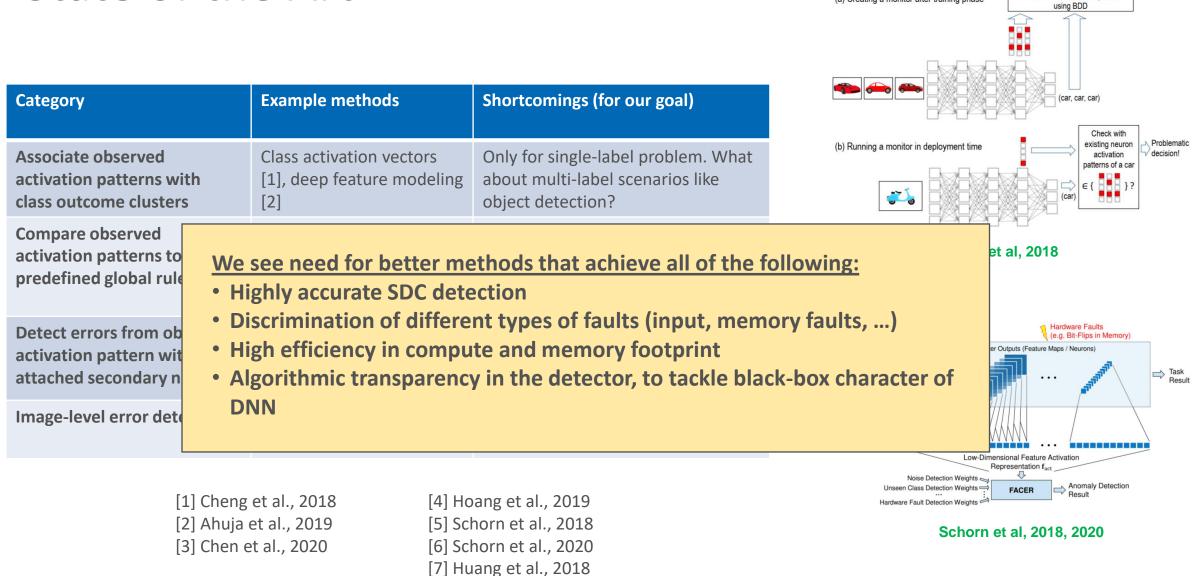
Figure 4: t-SNE visualization of (spatio-temporal) feature embeddings for UCF101 using C3D Resnet101 (Layer 1).

Ahuja et al, 2019: Deep feature modeling



Schorn et al, 2018, 2020: FACER (Feature activation consistency checker)

State of the Art



Record neuron activation patterns

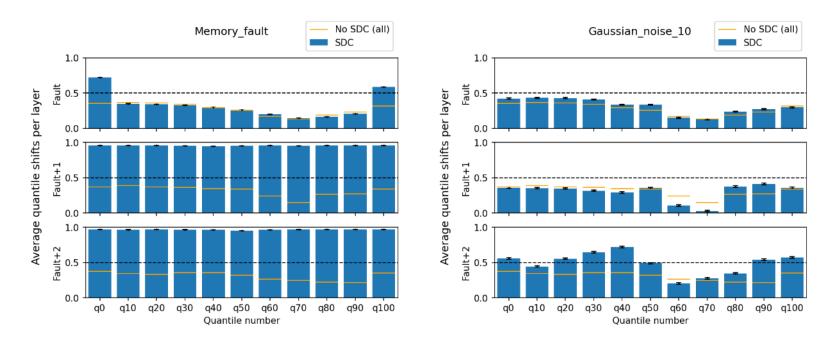
(a) Creating a monitor after training phase

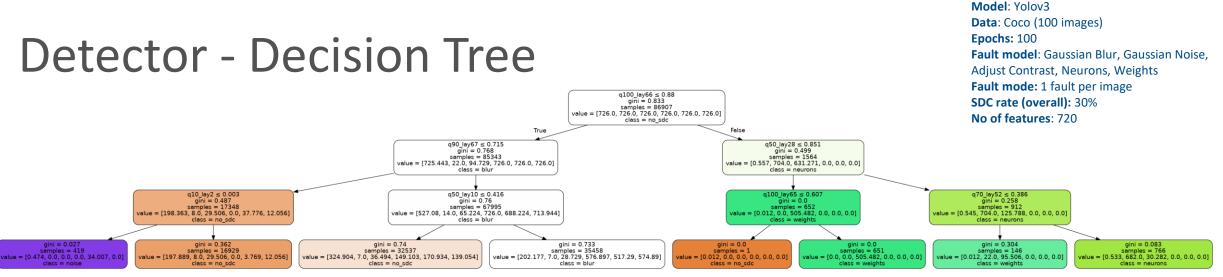
Quantile Shifts

Network layer (conv)

, Quantile marker (10 percentiles)

- Full quantile vector to find error patterns is $\vec{q} = [q_0^1, q_0^2, \dots, q_0^L, q_{10}^1, \dots, q_{100}^L]$
- Gets normalized to range (0,1) with 1: large out of bound values (pos or neg), 0.5: approx. the bounds, 0: within bounds and close to lower bound
- Confirm intuition in affected and following layers:
 - Memory fault → min/max quantiles out-of-bound (= **peak shift**), escalates to all quantiles quickly
 - Input faults → All quantiles changed slightly and in-bound (= **bulk shift**), escalates slowly towards out of bound quantiles





Decision tree graph (depth=3)

Ground truth

Prediction

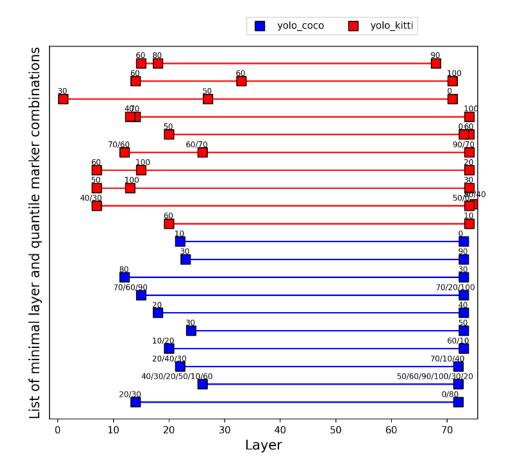
Tree Depth	P (SDC/NoSDC)	R (SDC/NoSDC)
3	0.31	0.60
5	0.44	0.95
10	0.66	0.99
No limit	0.98	0.99

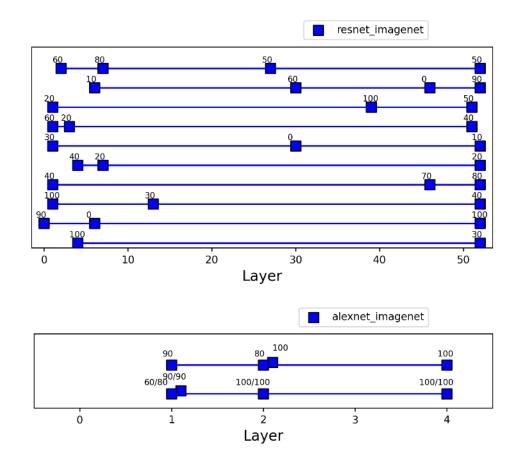
Tree precision and recall

Real\Predicted		No SDC	SDC					
		No SDC	Neurons	Weights	Blur	Noise	Contrast	
No SDC	No SDC	26790	140	52	2950	85	0	
	Neurons	12	330	6	2	0	0	
	Weights	17	7	448	2	0	0	
SDC	Blur	0	0	0	3534	0	317	
	Noise	37	2	0	2848	1235	0	
	Contrast	0	0	0	3314	0	677	

Tree confusion matrix (depth=10)

Feature reduction





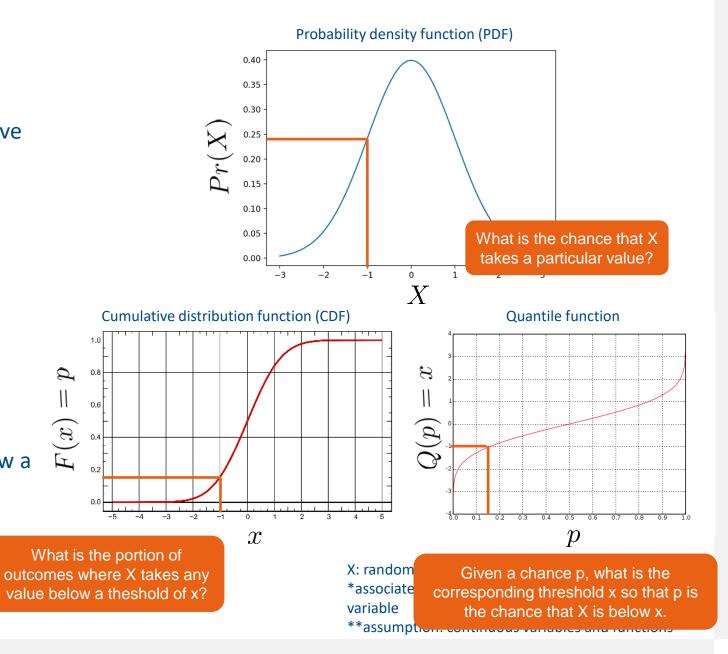
Doculto	Model		$\mathbf{P}(\%)$			$\mathbf{R}(\%)$		DT
Results		P_{cls}	$\mathbf{P}_{\mathbf{cat}}$	$\mathrm{P}_{\mathrm{sdc}}$	R_{cls}	$\mathrm{R}_{\mathrm{cat}}$	$\mathrm{R}_{\mathrm{sdc}}$	$N_{\rm ft}/N_{\rm l}$
	Yolo+Coco							
Legend:	full	95.8	96.4	96.1	98.2	98.6	98.4	825/75
P: Precision	red (avg)	93.3	94.6	93.4	97.4	96.3	96.7	2/2
R: Recall Cls, cat, sdc: detector metrics for class-wise, category-wise	Yolo+Kitti							
(input/memory), or sdc-only classificaiton	full	97.3	97.5	97.4	99.1	99.3	99.2	825/75
Nft: Number of monitored features (quantiles x layers)	red (avg)	92.6	92.1	92.0	97.3	96.4	96.8	3/2
NI: Number of monitored layers Full: detector model using all features	SSD+Coco							
Red (avg): Reduced detector model (averaged)	full	96.6	97.2	96.6	98.2	98.5	98.3	429/39
	red (avg)	95.2	96.3	94.9	96.5	94.5	95.9	3/3
	SSD+Kitti							
 3 input faults with 3 different 	full	96.0	97.1	96.2	98.4	98.7	98.6	429/39
magnitudes each + memory faults	red (avg)	92.8	94.6	92.1	98.0	97.7	98.2	2/2
	RetinaNet+Coco							
(average neurons and weights) =	full	96.6	95.7	96.9	97.1	94.9	98.0	781/71
10 fault modes	red (avg)	96.6	96.6	96.5	97.0	94.6	98.2	2/2
 SDC rate depends on model and 	${f RetinaNet+Kitti}$							
dataset (8 different computer	full	97.5	97.3	97.5	98.6	98.2	98.7	781/71
· ·	red (avg)	96.2	96.6	95.9	98.6	97.8	98.9	2/2
vision setups tested)	${f ResNet} + {f Imagenet}$							
 Calibrate experiments to get equal 	full	93.9	98.3	97.6	98.1	99.6	99.4	583/53
statistical samples	red (avg)	92.1	97.6	96.7	98.3	99.6	99.5	3/3
·	AlexNet+Imagenet							
	full	96.1	98.3	97.3	98.4	99.2	99.0	55/5
	red (avg)	93.2	96.8	95.0	98.0	99.0	98.8	4/3

Quantiles (I)

- The quantile function* is the inverse cumulative distribution function**, $\ Q=F^{-1}$

$$F_X(x) = Pr(X \le x) = p$$
$$Q(p) = F_X^{-1}(p) = x$$

- "Quantiles" are discrete evaluations of the quantile function (Q(p) = "p-quantile")
- Quantiles can discretize information about how a variable is distributed



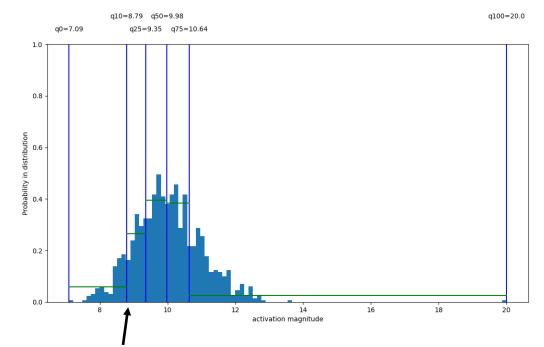
https://en.wikipedia.org/

Quantiles (II)

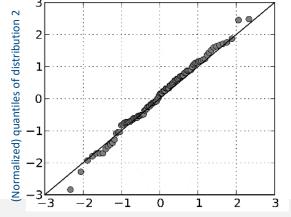
- Quantiles can discretize information about how the variable is distributed
- We can use the discretization to reconstruct an estimate distribution

$$Pr(q_m \le X \le q_n) \approx \frac{n-m}{q_n - q_m}$$

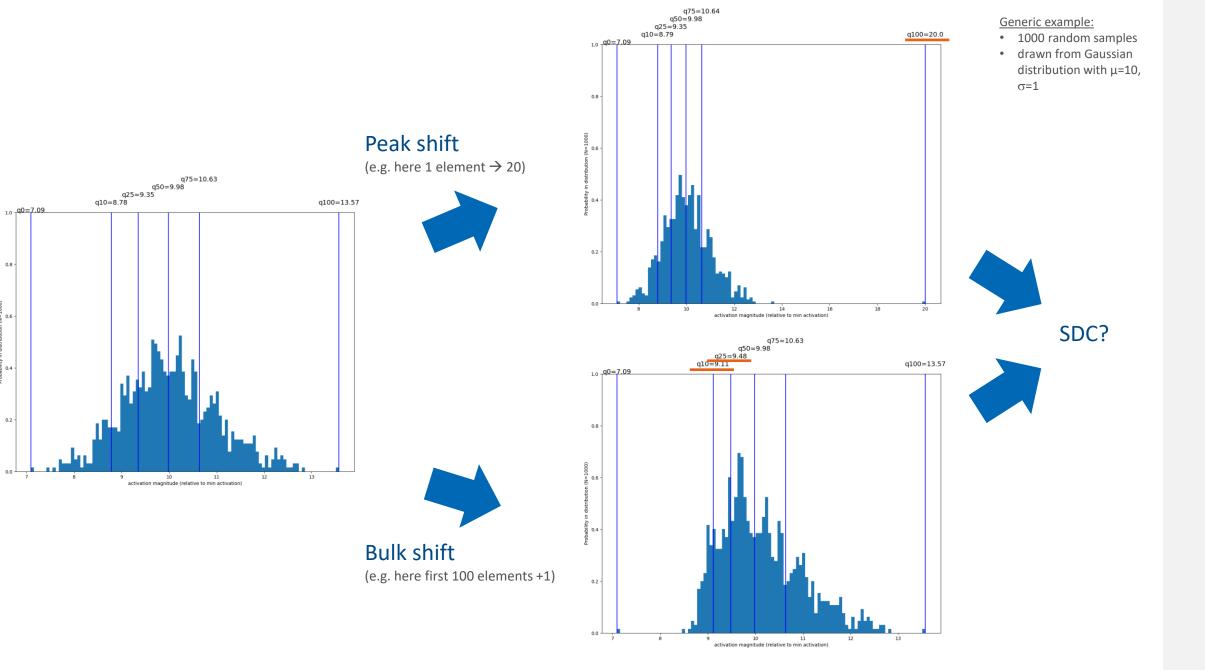
• Can be used to compare similarity of two distributions, e.g. Q-Q-Plot



10% quantile: 8.79 is the threshold so that 10% of all data points are below that



Note: Q0 = minimum Q50 = median Q100 = maximum



0.6

Atilig 0.4 ·

0.0

intel 22

Findings

- Performance
 - Detector in example setup achieves about P:95%, R:95% with fault trees, P:90%, R:90% with LR units and 5K training samples per fault mode. The confusion rate was found to be <3% when only focusing on SDC/no SDC.
- Efficiency
 - Feature space is significantly reduced (~400 features in Yolov3) compared to Schorn approach with fmap sums (~26Kfeatures). That also means that much less data is required to train the detector network. Fcc approach gives low P,R for given data.
 - Quantile monitoring is slower than activation sum (~10x), but can be compensated by above.
 - It appears that only the supervision of very few layers (~5 for Yolov3 from >70) is sufficient to achieve decent performance (P~80%, R~95%). This could be used to hook only some selected "symptom layers".
- Transparency
 - Detector is inherently transparent ML component: Human can understand decision based on symptoms
 - Acquire understanding about fault patterns in different parts of the network, e.g. emphasis on later layers
- Novelty
 - Use new way to condense features in much smaller network/tree for better efficiency in inference and detector training. Can be only specific layers.
 - Transparent monitoring, i.e. reasoning for fault detection is traceable and can be interpreted by a human
 - More generalized use case demonstrated (object detection). Method is architecture-independent.

