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Problem Statement

TP: True positives (green), FP: False positives (orange), FN: False negatives (blue)

• Complex DNNs are known to be sensitive to silent data corruption (SDC) under specific faults (noise, hardware, etc.)
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• Concept: Monitor intermediate activations to classify error patterns

• Need to  protect the DNN at runtime against diverse critical faults (while ignoring non-critical faults)

• Interpret the patterns to find best correction method and increment user trust
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State of the Art

Cheng et al, 2018Schorn et al, 2018, 2020

[1] Cheng et al., 2018
[2] Ahuja et al., 2019
[3] Chen et al., 2020

[4] Hoang et al., 2019
[5] Schorn et al., 2018
[6] Schorn et al., 2020
[7] Huang et al., 2018

Current methods have at least one of the following shortcomings:

▪ Use methods that are limited to single-label problems (e.g., associate error pattern with specific outcome class) [1,2]

▪ Use global thresholds for error classification that omit more subtle faults [3,4]

▪ Have in-transparent detector methods so that error patterns are not interpretable [5,6]

▪ Only address a single fault mode [7]

▪ Require significant compute or memory overhead [2, 5,6]

Universally applicable 

Capture subtle and outlier fault

Explainability

Address diverse fault patterns with a single detector

Efficient in compute and memory

Goals of our method:
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Failure Modes and Models

• 3 input faults with 3 different magnitudes each + 
memory faults (average neurons and weights) = 10
fault modes

• SDC rate depends on model and dataset 
(8 different computer vision setups tested)

• Calibrate experiments to get equal statistical samples

Memory fault, neurons, bit 1 Gaussian noise: 10

Adjust_contrast: 0.1Gaussian_blur: 3
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Our key observation

When SDC occurs, the topology of the feature maps in the affected layer typically changes as:

1. A few individual values get changed a lot = peak shift (seen for memory faults, large deviations in all 
subsequent layers)

2. Many (all) values get changed slightly = bulk shift (seen for input faults, can become large deviations in 
subsequent layers)

Example: Yolo + Kitti

→ Quantile markers capture both effects in a unified way
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Feature maps

Convolutional layers
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DNN

Activation

Fault detector

………

Feature map sums

Quantiles

(SDC, fault mode)

…

Kernel

Reference 
bounds

The method: Quantile Extraction

Example fmap sums: 
distribution of ~28K values

Example Quantiles: 720 values
(only ~10 check points to
represent one layer)

Note: Quantile extraction will
• Capture both peak and bulk shifts 

in a unified way
• Massively reduce the number of 

features to handle (and monitor)
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Real\Predicted
No SDC SDC

No SDC Neurons Weights Blur Noise Contrast

No SDC No SDC 26790 140 52 2950 85 0

SDC

Neurons 12 330 6 2 0 0

Weights 17 7 448 2 0 0

Blur 0 0 0 3534 0 317

Noise 37 2 0 2848 1235 0

Contrast 0 0 0 3314 0 677

Decision tree graph (depth=3)

Tree confusion matrix (depth=10)

Model: Yolov3
Data: Coco (100 images)
Epochs: 100
Fault model: Gaussian Blur, Gaussian Noise, 
Adjust Contrast, Neurons, Weights
Fault mode: 1 fault per image
SDC rate (overall): 30%
No of features: 720
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Detector - Decision Tree Decision node inspecting q100_lay66

• Decisions based on quantile values are fully 
transparent

• Error classification improves with tree depth
• Most confusions happen within input fault 

classes or input faults vs no SDC
• Error detection success metric can be varied 

depending on use case
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Results – Precision and Recall

• Results are averages across all failure modes, per model
• We find P >= 94%, R>97% for class-wise metric (all confusions except exact class get penalized)
• We find P > 95%, R>=95% for category-wise metric (confusions within the same fault category 

input/memory/no_sdc do not get penalized)

…………
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Results - Feature Reduction

• We can reduce the number of monitored quantiles and layers significantly and still get very good results for 
precision/recall

• In most cases, 2-3 quantiles from 2-3 layers are enough to reach >95% of the original performance (with all 
quantiles and layers) → Save a lot of compute and memory!

• Quantile markers: Typically, a strategic marker in a late layer and one in the first half of the DNN works best.

…………
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Results - Overhead
• Quantile monitoring is faster than 

feature map tracing: Additional 
quantile operation but do not need to 
store large tensors

• Reducing to minimal model saves more 
computation. Only 0.3%-1.6% 
inference time overhead for object 
detection models

• Information compression ratio: 
Quantile operation compresses data by 
a factor of >20 x, feature reduction by 
another factor of >10-400 x.

21-46 x 13-412 x68-9445 x

System: Intel Core i9-12900K, 
Nvidia GeForce RTX 3090
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Summary

• First method to address both hardware faults and input faults in a unified way

• Input and memory faults are associated with bulk and peak activation shifts, giving a unifying 
perspective on the dependability of DNNs

• Even for complex object detection networks, errors can efficiently be detected (P up to ~97%, R up 
to ~98%) even with quantile shifts in only a few layers (down to 2 layers)

• Method is low-cost, as high information compression incurs only low overhead (down to ~+0.3% in 
inference time)

• We identify minimal sets of relevant features for monitoring across models

• Detection with algorithmically transparent components such as decision trees

…………
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Problem statement
• Even complex DNNs are known to have robustness issues under specific faults (noise, hardware faults, etc.).

• Most critical are silent data corruption (SDC) errors!

• Goal: Error detection in two steps: 1) Monitor activation patterns, 2) Anomaly detection. 

• Challenges: Design DNN error detectors that are
• Efficient in performance and memory footprint

• Can reliably identify SDC, and differentiate fault modes

• Transparent to foster model explainability

TP: True positives, FP: False positives, FN: False negatives
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State of the art - examples

Cheng et al, 2018: class activation vectors

Ahuja et al, 2019: Deep feature modeling

Shortcomings:
Assumes discrete outcome classes to 
form cluster patterns, does not 
generalize to any ML problem.

!

Schorn et al, 2018, 2020: FACER (Feature activation consistency checker)

Shortcomings:
• Ranger: Blind to more subtle faults below maximum.
• Schorn: Still a huge amount of features to be extracted, used for classifier 

training → Need more efficient monitoring
• Schorn: Detector is again a black box → no transparency !
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State of the Art

Category Example methods Shortcomings (for our goal)

Associate observed 
activation patterns with 
class outcome clusters

Class activation vectors 
[1], deep feature modeling 
[2]

Only for single-label problem. What 
about multi-label scenarios like 
object detection?

Compare observed 
activation patterns to 
predefined global rules

Ranger [3], ClipAct [4] Works well for large deviations 
(platform faults) but missed subtle 
fault patterns, e.g., those that stay 
below the bounds

Detect errors from observed 
activation pattern with 
attached secondary network

Feature-trace mapping 
[5], FACER [6]

Can have large memory overhead, 
intransparent detector

Image-level error detector NN Blur-detector [7], etc. Only for specific fault mode, error 
does not have to become SDC!

Cheng et al, 2018

Schorn et al, 2018, 2020

[1] Cheng et al., 2018
[2] Ahuja et al., 2019
[3] Chen et al., 2020

[4] Hoang et al., 2019
[5] Schorn et al., 2018
[6] Schorn et al., 2020
[7] Huang et al., 2018

We see need for better methods that achieve all of the following:
• Highly accurate SDC detection
• Discrimination of different types of faults (input, memory faults, …)
• High efficiency in compute and memory footprint
• Algorithmic transparency in the detector, to tackle black-box character of 

DNN
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Quantile Shifts
• Full quantile vector to find error patterns is 

• Gets normalized to range (0,1) with 1:  large out of bound values (pos or neg), 0.5: approx. the bounds, 0: within 
bounds and close to lower bound

• Confirm intuition in affected and following layers: 
• Memory fault → min/max quantiles out-of-bound (= peak shift), escalates to all quantiles quickly 

• Input faults → All quantiles changed slightly and in-bound (= bulk shift), escalates slowly towards out of bound quantiles

Network layer (conv)

Quantile marker (10 percentiles)
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Real\Predicted
No SDC SDC

No SDC Neurons Weights Blur Noise Contrast

No SDC No SDC 26790 140 52 2950 85 0

SDC

Neurons 12 330 6 2 0 0

Weights 17 7 448 2 0 0

Blur 0 0 0 3534 0 317

Noise 37 2 0 2848 1235 0

Contrast 0 0 0 3314 0 677

Decision tree graph (depth=3)

Tree confusion matrix (depth=10)

Model: Yolov3
Data: Coco (100 images)
Epochs: 100
Fault model: Gaussian Blur, Gaussian Noise, 
Adjust Contrast, Neurons, Weights
Fault mode: 1 fault per image
SDC rate (overall): 30%
No of features: 720
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Detector - Decision Tree

Tree Depth P (SDC/NoSDC) R (SDC/NoSDC)

3 0.31 0.60

5 0.44 0.95

10 0.66 0.99

No limit 0.98 0.99

Tree precision and recall
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Feature reduction
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Results
Legend:
P: Precision
R: Recall
Cls, cat, sdc: detector metrics for class-wise, category-wise 
(input/memory), or sdc-only classificaiton
Nft: Number of monitored features (quantiles x layers)
Nl: Number of monitored layers
Full: detector model using all features
Red (avg): Reduced detector model (averaged)

• 3 input faults with 3 different 
magnitudes each + memory faults 
(average neurons and weights) = 
10 fault modes

• SDC rate depends on model and 
dataset (8 different computer 
vision setups tested)

• Calibrate experiments to get equal 
statistical samples
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Quantiles (I)

https://en.wikipedia.org/

X: random variable
*associated with the probability distribution of a random 
variable
**assumption: continuous variables and functions

Probability density function (PDF)

• The quantile function* is the inverse cumulative 
distribution function**,

• „Quantiles“ are discrete evaluations of the 
quantile function (Q(p) = “p-quantile”)

• Quantiles can discretize information about how a 
variable is distributed

Quantile functionCumulative distribution function (CDF)

What is the chance that X 

takes a particular value?

What is the portion of 

outcomes where X takes any 

value below a theshold of x?

Given a chance p, what is the 

corresponding threshold x so that p is 

the chance that X is below x.
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Quantiles (II)

10% quantile: 8.79 is the threshold so that10% 
of all data points are below that

• Quantiles can discretize information about 
how the variable is distributed

• We can use the discretization to reconstruct 
an estimate distribution

Note:
Q0 = minimum
Q50 = median
Q100 = maximum

https://en.wikipedia.org/

• Can be used to compare similarity of two 
distributions, e.g. Q-Q-Plot

(Normalized) quantiles of distribution 1
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Peak shift 
(e.g. here 1 element → 20)

Bulk shift 
(e.g. here first 100 elements +1)

Generic example:
• 1000 random samples 
• drawn from Gaussian 

distribution with µ=10, 
=1

Activation distribution monitoring: 
Generic example

SDC?
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Findings
• Performance

• Detector in example setup achieves about P:95%, R:95% with fault trees, P:90%, R:90% with LR units and 5K 
training samples per fault mode. The confusion rate was found to be <3% when only focusing on SDC/no SDC.

• Efficiency
• Feature space is significantly reduced (~400 features in Yolov3) compared to Schorn approach with fmap sums (~26Kfeatures). That also means that much less 

data is required to train the detector network. Fcc approach gives low P,R for given data.

• Quantile monitoring is slower than activation sum (~10x), but can be compensated by above.

• It appears that only the supervision of very few layers (~5 for Yolov3 from >70) is sufficient to achieve decent performance (P~80%, R~95%). This could be used 
to hook only some selected „symptom layers“.

• Transparency
• Detector is inherently transparent ML component: Human can understand decision based on symptoms

• Acquire understanding about fault patterns in different parts of the network, e.g. emphasis on later layers

• Novelty
• Use new way to condense features in much smaller network/tree for better efficiency in inference and detector training. Can be only specific layers.

• Transparent monitoring, i.e. reasoning for fault detection is traceable and can be interpreted by a human

• More generalized use case demonstrated (object detection). Method is architecture-independent.

…

PredictionInput 
image

CNN

…
… …

Fault detector


