
A Low-cost Strategic Monitoring Approach for Scalable
and Interpretable Error Detection in Deep Neural
Networks

Florian Geissler1, Syed Sha Qutub1, Michael Paulitsch1, and Karthik
Pattabiraman2

1 Intel Labs, Germany
2 University of British Columbia, Vancouver, Canada

SafeComp 2023, Toulouse, France

Intel ConfidentialDepartment or Event Name 22

Problem Statement

TP: True positives (green), FP: False positives (orange), FN: False negatives (blue)

• Complex DNNs are known to be sensitive to silent data corruption (SDC) under specific faults (noise, hardware, etc.)

D
N

N
 in

p
u

t
D

N
N

 o
u

tp
u

t

• Concept: Monitor intermediate activations to classify error patterns

• Need to protect the DNN at runtime against diverse critical faults (while ignoring non-critical faults)

• Interpret the patterns to find best correction method and increment user trust

Intel ConfidentialDepartment or Event Name 33

State of the Art

Cheng et al, 2018Schorn et al, 2018, 2020

[1] Cheng et al., 2018
[2] Ahuja et al., 2019
[3] Chen et al., 2020

[4] Hoang et al., 2019
[5] Schorn et al., 2018
[6] Schorn et al., 2020
[7] Huang et al., 2018

Current methods have at least one of the following shortcomings:

▪ Use methods that are limited to single-label problems (e.g., associate error pattern with specific outcome class) [1,2]

▪ Use global thresholds for error classification that omit more subtle faults [3,4]

▪ Have in-transparent detector methods so that error patterns are not interpretable [5,6]

▪ Only address a single fault mode [7]

▪ Require significant compute or memory overhead [2, 5,6]

Universally applicable

Capture subtle and outlier fault

Explainability

Address diverse fault patterns with a single detector

Efficient in compute and memory

Goals of our method:

Intel ConfidentialDepartment or Event Name 44

Failure Modes and Models

• 3 input faults with 3 different magnitudes each +
memory faults (average neurons and weights) = 10
fault modes

• SDC rate depends on model and dataset
(8 different computer vision setups tested)

• Calibrate experiments to get equal statistical samples

Memory fault, neurons, bit 1 Gaussian noise: 10

Adjust_contrast: 0.1Gaussian_blur: 3

Intel ConfidentialDepartment or Event Name 55

Our key observation

When SDC occurs, the topology of the feature maps in the affected layer typically changes as:

1. A few individual values get changed a lot = peak shift (seen for memory faults, large deviations in all
subsequent layers)

2. Many (all) values get changed slightly = bulk shift (seen for input faults, can become large deviations in
subsequent layers)

Example: Yolo + Kitti

→ Quantile markers capture both effects in a unified way

Intel ConfidentialDepartment or Event Name 66

Feature maps

Convolutional layers

O
u

tp
u

t

In
p

u
t

im
ag

e

DNN

Activation

Fault detector

………

Feature map sums

Quantiles

(SDC, fault mode)

…

Kernel

Reference
bounds

The method: Quantile Extraction

Example fmap sums:
distribution of ~28K values

Example Quantiles: 720 values
(only ~10 check points to
represent one layer)

Note: Quantile extraction will
• Capture both peak and bulk shifts

in a unified way
• Massively reduce the number of

features to handle (and monitor)

Intel ConfidentialDepartment or Event Name 77

Real\Predicted
No SDC SDC

No SDC Neurons Weights Blur Noise Contrast

No SDC No SDC 26790 140 52 2950 85 0

SDC

Neurons 12 330 6 2 0 0

Weights 17 7 448 2 0 0

Blur 0 0 0 3534 0 317

Noise 37 2 0 2848 1235 0

Contrast 0 0 0 3314 0 677

Decision tree graph (depth=3)

Tree confusion matrix (depth=10)

Model: Yolov3
Data: Coco (100 images)
Epochs: 100
Fault model: Gaussian Blur, Gaussian Noise,
Adjust Contrast, Neurons, Weights
Fault mode: 1 fault per image
SDC rate (overall): 30%
No of features: 720

G
ro

u
n

d
 t

ru
th

Prediction

Detector - Decision Tree Decision node inspecting q100_lay66

• Decisions based on quantile values are fully
transparent

• Error classification improves with tree depth
• Most confusions happen within input fault

classes or input faults vs no SDC
• Error detection success metric can be varied

depending on use case

Intel ConfidentialDepartment or Event Name 88

Results – Precision and Recall

• Results are averages across all failure modes, per model
• We find P >= 94%, R>97% for class-wise metric (all confusions except exact class get penalized)
• We find P > 95%, R>=95% for category-wise metric (confusions within the same fault category

input/memory/no_sdc do not get penalized)

…………

Intel ConfidentialDepartment or Event Name 99

Results - Feature Reduction

• We can reduce the number of monitored quantiles and layers significantly and still get very good results for
precision/recall

• In most cases, 2-3 quantiles from 2-3 layers are enough to reach >95% of the original performance (with all
quantiles and layers) → Save a lot of compute and memory!

• Quantile markers: Typically, a strategic marker in a late layer and one in the first half of the DNN works best.

…………

Intel ConfidentialDepartment or Event Name 1010

Results - Overhead
• Quantile monitoring is faster than

feature map tracing: Additional
quantile operation but do not need to
store large tensors

• Reducing to minimal model saves more
computation. Only 0.3%-1.6%
inference time overhead for object
detection models

• Information compression ratio:
Quantile operation compresses data by
a factor of >20 x, feature reduction by
another factor of >10-400 x.

21-46 x 13-412 x68-9445 x

System: Intel Core i9-12900K,
Nvidia GeForce RTX 3090

Intel ConfidentialDepartment or Event Name 1111

Summary

• First method to address both hardware faults and input faults in a unified way

• Input and memory faults are associated with bulk and peak activation shifts, giving a unifying
perspective on the dependability of DNNs

• Even for complex object detection networks, errors can efficiently be detected (P up to ~97%, R up
to ~98%) even with quantile shifts in only a few layers (down to 2 layers)

• Method is low-cost, as high information compression incurs only low overhead (down to ~+0.3% in
inference time)

• We identify minimal sets of relevant features for monitoring across models

• Detection with algorithmically transparent components such as decision trees

…………

Intel ConfidentialDepartment or Event Name 1313

Problem statement
• Even complex DNNs are known to have robustness issues under specific faults (noise, hardware faults, etc.).

• Most critical are silent data corruption (SDC) errors!

• Goal: Error detection in two steps: 1) Monitor activation patterns, 2) Anomaly detection.

• Challenges: Design DNN error detectors that are
• Efficient in performance and memory footprint

• Can reliably identify SDC, and differentiate fault modes

• Transparent to foster model explainability

TP: True positives, FP: False positives, FN: False negatives

Intel ConfidentialDepartment or Event Name 1414

State of the art - examples

Cheng et al, 2018: class activation vectors

Ahuja et al, 2019: Deep feature modeling

Shortcomings:
Assumes discrete outcome classes to
form cluster patterns, does not
generalize to any ML problem.

!

Schorn et al, 2018, 2020: FACER (Feature activation consistency checker)

Shortcomings:
• Ranger: Blind to more subtle faults below maximum.
• Schorn: Still a huge amount of features to be extracted, used for classifier

training → Need more efficient monitoring
• Schorn: Detector is again a black box → no transparency !

Intel ConfidentialDepartment or Event Name 1515

State of the Art

Category Example methods Shortcomings (for our goal)

Associate observed
activation patterns with
class outcome clusters

Class activation vectors
[1], deep feature modeling
[2]

Only for single-label problem. What
about multi-label scenarios like
object detection?

Compare observed
activation patterns to
predefined global rules

Ranger [3], ClipAct [4] Works well for large deviations
(platform faults) but missed subtle
fault patterns, e.g., those that stay
below the bounds

Detect errors from observed
activation pattern with
attached secondary network

Feature-trace mapping
[5], FACER [6]

Can have large memory overhead,
intransparent detector

Image-level error detector NN Blur-detector [7], etc. Only for specific fault mode, error
does not have to become SDC!

Cheng et al, 2018

Schorn et al, 2018, 2020

[1] Cheng et al., 2018
[2] Ahuja et al., 2019
[3] Chen et al., 2020

[4] Hoang et al., 2019
[5] Schorn et al., 2018
[6] Schorn et al., 2020
[7] Huang et al., 2018

We see need for better methods that achieve all of the following:
• Highly accurate SDC detection
• Discrimination of different types of faults (input, memory faults, …)
• High efficiency in compute and memory footprint
• Algorithmic transparency in the detector, to tackle black-box character of

DNN

Intel ConfidentialDepartment or Event Name 1616

Quantile Shifts
• Full quantile vector to find error patterns is

• Gets normalized to range (0,1) with 1: large out of bound values (pos or neg), 0.5: approx. the bounds, 0: within
bounds and close to lower bound

• Confirm intuition in affected and following layers:
• Memory fault → min/max quantiles out-of-bound (= peak shift), escalates to all quantiles quickly

• Input faults → All quantiles changed slightly and in-bound (= bulk shift), escalates slowly towards out of bound quantiles

Network layer (conv)

Quantile marker (10 percentiles)

Intel ConfidentialDepartment or Event Name 1717

Real\Predicted
No SDC SDC

No SDC Neurons Weights Blur Noise Contrast

No SDC No SDC 26790 140 52 2950 85 0

SDC

Neurons 12 330 6 2 0 0

Weights 17 7 448 2 0 0

Blur 0 0 0 3534 0 317

Noise 37 2 0 2848 1235 0

Contrast 0 0 0 3314 0 677

Decision tree graph (depth=3)

Tree confusion matrix (depth=10)

Model: Yolov3
Data: Coco (100 images)
Epochs: 100
Fault model: Gaussian Blur, Gaussian Noise,
Adjust Contrast, Neurons, Weights
Fault mode: 1 fault per image
SDC rate (overall): 30%
No of features: 720

G
ro

u
n

d
 t

ru
th

Prediction

Detector - Decision Tree

Tree Depth P (SDC/NoSDC) R (SDC/NoSDC)

3 0.31 0.60

5 0.44 0.95

10 0.66 0.99

No limit 0.98 0.99

Tree precision and recall

Intel ConfidentialDepartment or Event Name 1818

Feature reduction

Intel ConfidentialDepartment or Event Name 1919

Results
Legend:
P: Precision
R: Recall
Cls, cat, sdc: detector metrics for class-wise, category-wise
(input/memory), or sdc-only classificaiton
Nft: Number of monitored features (quantiles x layers)
Nl: Number of monitored layers
Full: detector model using all features
Red (avg): Reduced detector model (averaged)

• 3 input faults with 3 different
magnitudes each + memory faults
(average neurons and weights) =
10 fault modes

• SDC rate depends on model and
dataset (8 different computer
vision setups tested)

• Calibrate experiments to get equal
statistical samples

Intel ConfidentialDepartment or Event Name 2020

Quantiles (I)

https://en.wikipedia.org/

X: random variable
*associated with the probability distribution of a random
variable
**assumption: continuous variables and functions

Probability density function (PDF)

• The quantile function* is the inverse cumulative
distribution function**,

• „Quantiles“ are discrete evaluations of the
quantile function (Q(p) = “p-quantile”)

• Quantiles can discretize information about how a
variable is distributed

Quantile functionCumulative distribution function (CDF)

What is the chance that X

takes a particular value?

What is the portion of

outcomes where X takes any

value below a theshold of x?

Given a chance p, what is the

corresponding threshold x so that p is

the chance that X is below x.

Intel ConfidentialDepartment or Event Name 2121

Quantiles (II)

10% quantile: 8.79 is the threshold so that10%
of all data points are below that

• Quantiles can discretize information about
how the variable is distributed

• We can use the discretization to reconstruct
an estimate distribution

Note:
Q0 = minimum
Q50 = median
Q100 = maximum

https://en.wikipedia.org/

• Can be used to compare similarity of two
distributions, e.g. Q-Q-Plot

(Normalized) quantiles of distribution 1

(N
o

rm
al

iz
ed

)
q

u
an

ti
le

s
o

f
d

is
tr

ib
u

ti
o

n
 2

Intel ConfidentialDepartment or Event Name 2222

Peak shift
(e.g. here 1 element → 20)

Bulk shift
(e.g. here first 100 elements +1)

Generic example:
• 1000 random samples
• drawn from Gaussian

distribution with µ=10,
=1

Activation distribution monitoring:
Generic example

SDC?

Intel ConfidentialDepartment or Event Name 2323

Findings
• Performance

• Detector in example setup achieves about P:95%, R:95% with fault trees, P:90%, R:90% with LR units and 5K
training samples per fault mode. The confusion rate was found to be <3% when only focusing on SDC/no SDC.

• Efficiency
• Feature space is significantly reduced (~400 features in Yolov3) compared to Schorn approach with fmap sums (~26Kfeatures). That also means that much less

data is required to train the detector network. Fcc approach gives low P,R for given data.

• Quantile monitoring is slower than activation sum (~10x), but can be compensated by above.

• It appears that only the supervision of very few layers (~5 for Yolov3 from >70) is sufficient to achieve decent performance (P~80%, R~95%). This could be used
to hook only some selected „symptom layers“.

• Transparency
• Detector is inherently transparent ML component: Human can understand decision based on symptoms

• Acquire understanding about fault patterns in different parts of the network, e.g. emphasis on later layers

• Novelty
• Use new way to condense features in much smaller network/tree for better efficiency in inference and detector training. Can be only specific layers.

• Transparent monitoring, i.e. reasoning for fault detection is traceable and can be interpreted by a human

• More generalized use case demonstrated (object detection). Method is architecture-independent.

…

PredictionInput
image

CNN

…
… …

Fault detector

