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DNN input

DNN output

Problem Statement

No fault Memory_fault: neurons, bit 1
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TP: True positives (green), FP: False positives (orange), FN: False negatives (blue)

Complex DNNs are known to be sensitive to silent data corruption (SDC) under specific faults (noise, hardware, etc.)

Need to protect the DNN at runtime against diverse critical faults (while ignoring non-critical faults)

Concept: Monitor intermediate activations to classify error patterns

Interpret the patterns to find best correction method and increment user trust
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State of the Art

Deep Neural Network (DNN)
Excessive for Safety-Critical Task
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Current methods have at least one of the following shortcomings:

Only address a single fault mode [7]

Use global thresholds for error classification that omit more subtle faults [3,4]

Have in-transparent detector methods so that error patterns are not interpretable [5,6]

Goals of our method:

Universally applicable

Use methods that are limited to single-label problems (e.g., associate error pattern with specific outcome class) [1,2]

Capture subtle and outlier fault

Explainability

Address diverse fault patterns with a single detector

Require significant compute or memory overhead [2, 5,6]

Efficient in compute and memory
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Failure Modes and Models

Memory fault, neurons, bit 1 Gaussian noise: 10

Gaussian_blur: 3 Adjust_contrast: 0.1

TP: 7, FP: 1, FN: 6|
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e 3input faults with 3 different magnitudes each +
memory faults (average neurons and weights) = 10
fault modes

* SDC rate depends on model and dataset
(8 different computer vision setups tested)
e Calibrate experiments to get equal statistical samples
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Adjust_contrast:0.1

Kitti

When SDC occurs, the topology of the feature maps in the affected layer typically changes as:

1. A few individual values get changed a lot = peak shift (seen for memory faults, large deviations in all

subsequent layers)

2. Many (all) values get changed slightly = bulk shift (seen for input faults, can become large deviations in

subsequent layers)

= Quantile markers capture both effects in a unified way

intel.

5



. . Note: Quantile extraction will
The mEthOd Quant”e EXtraCt|On e Capture both peak and bulk shifts
in a unified way
e Massively reduce the number of
DNN features to handle (and monitor)

Kernel .
Convolutional layers

Memory_fault: neurons, bit 1

Input image
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Output

Feature maps

Activation
Feature map sums
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L. E I tiles: 720 val
distribution of ~28K values xample Quantiles values

(only ~10 check points to
represent one layer)
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Detector - Decision Tree

C

Ground truth

q10_lay2 = 0.003
gini = 0.487

value = [198.363,

samples = 17348
, 8.0, 29.506, 0.0, 37.776, 12.056]
class = no_sdc

Decision node inspecting q100_lay66

/

q100_lay66 =< 0.88
gini = 0.833

55 = no_sdc

samples = 86907
value = [726.0, 726.0, 726.0, 726.0, 726.0, 726.0]
cla:

990_lay67 = 0.715
gini = 0.768

samples = 85343
value = [725.443, ZZ.IO. 9412[9‘ 726.0, 726.0, 726.0]
class = blur

q50_layl0 = 0.416
gini = 0.76

55 =

samples = 67995
= [527.08, 14.0, 65.224, 726.0, 688.224, 713.944)
class = blur

sampl
value = [324.904, 7.0, 36.4
clas:

gini = 0.74
es = 32

=

gini = 0.733

537 samples = 35458
94, 149,103, 170.934, 139.054] value = [202.177, 7.0, 28.729, 576.897, 517.29, 574.89]
Ic cla: lur

Decision tree graph (depth=3)

Prediction
No SDC SDC
Real\Predicted
No SDC | Neurons | Weights Blur Noise Contrast
No SDC | NoSDC 26790 140 52 2950 85 0
Neurons 12 330 6 2 0 0
Weights 17 7 448 2 0 0
SDC Blur 0 0 0 3534 0 317
Noise 37 2 0 2848 1235 0
Contrast 0 0 0 3314 0 677

Tree confusion matrix (depth=10)

Nﬁe

q50_lay28 = 0.851
gini = 0.499

samples = 1564
value = [0.557, 704.0, 631.271, 0.0, 0.0, 0.0]
class = neurons

Model: Yolov3

Data: Coco (100 images)

Epochs: 100

Fault model: Gaussian Blur, Gaussian Noise,
Adjust Contrast, Neurons, Weights

Fault mode: 1 fault per image

SDC rate (overall): 30%

No of features: 720

\.

qgini = 0.258
samples = 912
value = [0.545, 704.0, 125.788, 0.0, 0.0, 0.0]

class = neurons
gini = 0.304

i = 0.083
[ samples = 146 ] [ ARC J
value = [0.012, 22.0, 95.506, 0.0, 0.0, 0.0] value = [0.533, 682.0, 30.282, 0.0, 0.0, 0.0]
class = weights class = neurons

q70_lay52 = 0.386 l

Decisions based on quantile values are fully

transparent

Error classification improves with tree depth
Most confusions happen within input fault
classes or input faults vs no SDC

Error detection success metric can be varied
depending on use case
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Precision (%)

Results — Precision and Recall
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Retina+Coco
Retina+Kitti
Retina+Coco
Retina+Kitti

Resnet+ImageNet
Resnet+ImageNet

AlexNet+ImageNet
AlexNet+ImageNet

e Results are averages across all failure modes, per model

*  We find P >=94%, R>97% for class-wise metric (all confusions except exact class get penalized)

 We find P >95%, R>=95% for category-wise metric (confusions within the same fault category
input/memory/no_sdc do not get penalized)
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Results - Feature Reduction
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No of features No of features

* We can reduce the number of monitored quantiles and layers significantly and still get very good results for
precision/recall

* In most cases, 2-3 quantiles from 2-3 layers are enough to reach >95% of the original performance (with all
quantiles and layers) = Save a lot of compute and memory!

* Quantile markers: Typically, a strategic marker in a late layer and one in the first half of the DNN works best.
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Results - Overhead

Inference time per image (ms)
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original (CPU)
quantiles red (CPU)
quantiles full (CPU)
fmap trace (CPU)
original (GPU)
quantiles red (GPU)
quantiles full (GPU)
fmap trace (GPU)
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Model Nact Nfm N (full) min(Ng) (red) |
Yolo+Coco 39.2M 27.1K 825 2
Yolo+Kitti 38.4M 26.4K 825 2
SSD+Coco 75.4M 11.6K 429 2
SSD+Kitti 73.7TM 9.1K 429 2
RetinaNet+Coco 296.6M 31.4K 781 2
RetinaNet+Kitti 69.7TM 30.8K 781 2
ResNet+Imagenet 2.4AM 26.6K 583 2
AlexNet+Imagenet 82.4K 1.2K 55 4
68-9445 x 416 % 13-412 x

System: Intel Core i9-12900K,
Nvidia GeForce RTX 3090

Quantile monitoring is faster than
feature map tracing: Additional
quantile operation but do not need to
store large tensors

Reducing to minimal model saves more
computation. Only 0.3%-1.6%
inference time overhead for object
detection models

Information compression ratio:
Quantile operation compresses data by
a factor of >20 x, feature reduction by
another factor of >10-400 x.
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Summary

First method to address both hardware faults and input faults in a unified way

Input and memory faults are associated with bulk and peak activation shifts, giving a unifying
perspective on the dependability of DNNs

Even for complex object detection networks, errors can efficiently be detected (P up to ~¥97%, R up
to ~98%) even with quantile shifts in only a few layers (down to 2 layers)

Method is low-cost, as high information compression incurs only low overhead (down to ~+0.3% in
inference time)

We identify minimal sets of relevant features for monitoring across models

Detection with algorithmically transparent components such as decision trees
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Problem statement

e Even complex DNNs are known to have robustness issues under specific faults (noise, hardware faults, etc.).

e Most critical are silent data corruption (SDC) errors!

No fault Memory_fault: neurons, bit 1 Gaussian_noise:10

TP: True positives, FP: False positives, FN: False negatives

e Goal: Error detection in two steps: 1) Monitor activation patterns, 2) Anomaly detection.

e Challenges: Design DNN error detectors that are
e Efficient in performance and memory footprint
e Can reliably identify SDC, and differentiate fault modes
e Transparent to foster model explainability
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State of the art - examples

(a) Creating a monitor after training phase Record neuron activation patterns
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Cheng et al, 2018: class activation vectors

Original UCF-101
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Deep Neural Network (DNN) <) Hardware Faults

Excessive for Safety-Critical Task Y (e.g. Bit-Flips in Memory)
|npuf Noise Intermediate Layer Outputs (Feature Maps / Neurons)
5]
DNN IlI _llll 50 Task
Input[:> S .|111 -y Result
1]
/ [
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Samples
EHEEE EEEEEEEEE - EENEEEEREEEE
Low-Dimensional Feature Activation
Representatlon
Noise Detection Weights =

Unseen Class Detection Weights = FACER = Qnorr:taly Detection
: esu

Hardware Fault Detection Weights =

Schorn et al, 2018, 2020: FACER (Feature activation consistency checker)

Pde Eommend AR 107 fbfan e

Shortcomings:
* Ranger: Blind to more subtle faults below maximum.

e Schorn: Still a huge amount of features to be extracted, used for cla
training > Need more efficient monitoring
* Schorn: Detector is again a black box = no transparency

ifier

Figure 4: t-SNE visualization of (spatio-temporal) feature embeddings for UCF101 using C3D

Resnet101 (Layer 1).

Ahuja et al, 2019: Deep feature modeling
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State of the Art

(a) Creating a monitor after training phase Record "e“l']‘;’i‘n;"g‘l’;g°" pattems
Category Example methods Shortcomings (for our goal) PR R A e
Check with
i i i . (b) Running a monitor in deployment time A existing neuron Pr0§l§m|a1tic
Associate observed Class activation vectors Only for single-label problem. What H— [
activation patterns with [1], deep feature modeling about multi-label scenarios like - e N o e QHE 1
class outcome clusters [2] object detection? % | Chi bl bl il 1en|  BES
Compare observed
activation patterns t . . et al, 2018
: We see need for better methods that achieve all of the following:
predefined global rul X X
* Highly accurate SDC detection
. Piceriminats . .
Detect errors from o D!scrlml.n?tlon ?f different types of faults (mpu.t, memory faults, ...) e
activation patternwif  * High efficiency in compute and memory footprint éllm )
attached secondaryn| * Algorithmic transparency in the detector, to tackle black-box character of ﬁj—l' S N g
Image-level error det DNN ‘ |

Low-Dimensional Feature Activation
Representation f,

Noise Detection Weights e

Unseen Class Detection Weights == = /F\{:g:.lllaly Detection
[1] Cheng et al., 2018 [4] Hoang et al., 2019

[2] Ahuja et al., 2019 [5] Schorn et al., 2018
[3] Chen et al., 2020 [6] Schorn et al., 2020
[7] Huang et al., 2018

Schorn et al, 2018, 2020
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Quantile Shifts

e Full quantile vector to find error patterns is

bounds and close to lower bound

e Confirm intuition in affected and following layers:

7= a2 b g aod]

e Gets normalized to range (0,1) with 1: large out of bound values (pos or neg), 0.5: approx. the bounds, 0: within

Network layer (conv)

Quantile marker (10 percentiles)

Memory fault 2 min/max quantiles out-of-bound (= peak shift), escalates to all quantiles quickly

Input faults = All quantiles changed slightly and in-bound (= bulk shift), escalates slowly towards out of bound quantiles

Average quantile shifts per layer

Memory fault —— No SDC (all)
- = SDC

gqd gl0 g20 g30 qgd40 g50 qg60 g70 gB80 g90 qlOO
Quantile number

Average quantile shifts per layer

Gaussian_noise_10 —— No SDC (all)
= SDC

gqd gl0 g20 g30 qgd40 g50 qg60 g70 gB80 g90 qlOO
Quantile number
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Detector - Decision Tree

q10_lay2 = 0.003

N-B.JBT

value = [198963 80 29508 00 37.776, 12.056]

——

ql00_lay66 = 0.88
gini = 0.833
les = 86907

class = no_sdc

samples
value = [726.0, 726.0, 726.0, 726.0, 726.0, 726. a]}

value =

q90_lay67 = 0.715
gini = 0 155
amples

[725.443, 22 0 94_129 726 0, 726.0, 726.0]

class = blur

value

q50_layl0 = 0.416
gini = 0.76
amples = 67995

class = blur

Si
=[527.08, 14.0, 65.224, 726.0, 688.224, 713944]}

glnl -074 gml 0733
mples = 325 mples = 354!
velue [324.904, 7. D 35 494, 149. 103 170.934, 139.054] value = [202.177, 7. 0 28.729, 576 897 517.29, 574.89]
class = no_sdc class = blur

Decision tree graph (depth=3)

Nﬁe

950_lay28 = 0.851
glm 0.499

ples = 1564
value = [0.557 704 0, 631.271, 0.0, 0.0, 0.0]
class = neurons

\.

Model: Yolov3

Data: Coco (100 images)

Epochs: 100

Fault model: Gaussian Blur, Gaussian Noise,
Adjust Contrast, Neurons, Weights
Fault mode: 1 fault per image

SDC rate (overall): 30%
No of features: 720

q70_lay52 = 0.386
gini = 0.258

samples = 912

value = [0.545, S04 0, 125.788,

class =

0.0,0.0, 00]}

\

gini = 0.304

neurons
[

gini = 0.083

class = neurons

samples = 146 ] [ samples = 766 J
=[0. 012 22.0, 95.506, 0.0, 0.0, 0.0] value = [0.533, 682.0, 30.282, 0.0, 0.0, 0.0]

Tree Depth P (SDC/NoSDC) R (SDC/NoSDC)
B 0.31 0.60
5 0.44 0.95
10 0.66 0.99
No limit 0.98 0.99

Ground truth

Tree precision and recall

Prediction
No SDC SDC
Real\Predicted
No SDC Neurons Weights Blur Noise Contrast
No SDC No SDC 26790 140 52 2950 85 0
Neurons 12 330 6 2 0 0
Weights 17 7 448 2 0 0
SDC Blur 0 0 0 3534 0 317
Noise 37 2 0 2848 1235 0
Contrast 0 0 0 3314 0 677

Tree confusion matrix (depth=10)
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Feature reduction

List of minimal layer and quantile marker combinations
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Results

Legend:
P: Precision

R: Recall

Cls, cat, sdc: detector metrics for class-wise, category-wise
(input/memory), or sdc-only classificaiton

Nft: Number of monitored features (quantiles x layers)

NI: Number of monitored layers

Full: detector model using all features

Red (avg): Reduced detector model (averaged)

e 3input faults with 3 different
magnitudes each + memory faults
(average neurons and weights) =
10 fault modes

* SDC rate depends on model and
dataset (8 different computer
vision setups tested)

e Calibrate experiments to get equal
statistical samples

Model P(%) R (%) DT
Peis Peat Psae Reis Reat Rede N f(Nl
Yolo+Coco
full 95.8  96.4 96.1 | 98.2 98.6 984 | 825/75
red (avg) 93.3 946 934 | 974 96.3  96.7 2/2
Yolo+Kitti
full 97.3 975 974 | 991 99.3 99.2 825/75
red (avg) 92.6 921 920 | 973 964 96.8 3/2
SSD+4Coco
full 96.6 97.2 96.6 | 98.2 98.5 983 | 429/39
red (avg) 95.2 963 949 | 965 945 959 3/3
SSD+Kitti
full 96.0 97.1 96.2 | 98.4 98.7 986 | 429/39
red (avg) 92.8 94.6 92.1 | 98.0 97.7 98.2 2/2
RetinalNet+Coco
full 96.6  95.7 96.9 | 97.1 949 98.0 | T81/71
red (avg) 96.6 96.6 96.5 | 97.0 94.6  98.2 2/2
RetinalNet+ Kitti
full 97.5 973 975 | 98.6 982 98.7 | 781/71
red (avg) 96.2 96.6 959 | 98.6 97.8 98.9 2/2
ResNet+Imagenet
full 93.9 983 976 | 981 99.6 99.4 | 583/53
red (avg) 921 97.6 96.7 | 983 996 99.5 3/3
AlexNet+Imagenet
full 96.1 983 97.3 | 984 99.2 99.0 55/5
red (avg) 93.2 96.8 950 | 98.0 99.0 98.8 4/3

intel.

19



Quantiles ()

The quantile function* is the inverse cumulative

distribution function**, Q = F~!

,Quantiles” are discrete evaluations of the
guantile function (Q(p) = “p-quantile”)

Quantiles can discretize information about howa &, |

variable is distributed

https://en.wikipedia.org/

Probability density function (PDF)
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What is the portion of

outcomes where X takes any
value below a theshold of x?

a i i i i i H H i i
4 5 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

p

X: rand'o Given a chance p, what is the
*associate corresponding threshold x so that p is

variable the chance that X is below x.
**assumptromege S s
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https://en.wikipedia.org/

Quantiles (Il)
Quantiles can discretize information about
how the variable is distributed
We can use the discretization to reconstruct
an estimate distribution - ‘ ‘ |
Pr(gm <X <q,) ~ ﬁ 10% quantiL:8.79 is the threshold so that10%
of all data points are below that
~ 3 I ! I !
* Can be used to compare similarity of two Sool ' ________
distributions, e.g. Q-Q-Plot CRN R R P 408
E Note:
% ok oo _______ ________ _________ Q0 = minimum
E_l_ ________ _______ _________ __________ ________ __________ Q50 = median
% Y T T S Q100 = maximum
2 3t ® ; i i i

3 -2 -1 0 1 2 3
. . . . . 1 L]
(Normalized) quantiles of distribution |nte|o
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Findings :
e Performance ﬁgﬁ/ ;(

e Detector in example setup achieves about P:95%, R:95% with fault trees, P:90%, R:90% with LR units and 5K
training samples per fault mode. The confusion rate was found to be <3% when only focusing on SDC/no SDC.

£ Fault detector

e Efficiency
e Feature space is significantly reduced (~400 features in Yolov3) compared to Schorn approach with fmap sums (~26Kfeatures). That also means that much less
data is required to train the detector network. Fcc approach gives low P,R for given data.

e Quantile monitoring is slower than activation sum (~10x), but can be compensated by above.
e |t appears that only the supervision of very few layers (~5 for Yolov3 from >70) is sufficient to achieve decent performance (P~80%, R~95%). This could be used
to hook only some selected ,,symptom layers*.

e Transparency
e Detector is inherently transparent ML component: Human can understand decision based on symptoms

e Acquire understanding about fault patterns in different parts of the network, e.g. emphasis on later layers

e Novelty

e Use new way to condense features in much smaller network/tree for better efficiency in inference and detector training. Can be only specific layers.
e Transparent monitoring, i.e. reasoning for fault detection is traceable and can be interpreted by a human

e More generalized use case demonstrated (object detection). Method is architecture-independent.

CNN Prediction
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