DENSO

Crafting the Core

Are Transformers More Robust?
Towards Exact Robustness

Verification for Transformers

SafeComp, 20.09.2023

Brian Hsuan-Cheng Liao

Systems Engineering R&D
Corporate R&D
DENSO AUTOMOTIVE Deutschland GmbH (DNDE)

In collaboration with

Dr. Chih-Hong Cheng (Fraunhofer IKS)

Dr. Hasan Esen (DNDE)

Prof. Alois Knoll (Technical University of Munich)




Neural Networks Are Everywhere ...

Y

Autonomous Driving Medical Diagnosis
Aircraft Autopiloting Surgical Robots

[1] Source: Bloomberg.
[2] Source: CeramTec.
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https://www.bloomberg.com/news/articles/2018-09-12/how-self-driving-cars-can-get-past-the-learning-permit-stage-without-any-risk
https://www.ceramtec-medical.com/en/medical-equipment

Especially Transformers ...

Attention Is All You Need
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AN IMAGE IS WORTH 16X16 WORDS:
TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE
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Abstract. We present a new method that views object detection as a
direct set prediction problem. Our approach streamlines the detection
pipeline, effectively removing the need for many hand-designed compo-
nents like a non-maximum suppression procedure or anchor generation
that explicitly encode our prior knowledge about the task. The main
ingredients of the new framework, called DEtection TRansformer or
DETR, are a set-based global loss that forces unique predictions via bi-
partite matching, and a transformer encoder-decoder architecture. Given
a fixed small set of learned object queries, DETR reasons about the re-
lations of the objects and the global image context to directly output
the final set of predictions in parallel. The new model is conceptually
simple and does not require a specialized library, unlike many other
modern detectors. DETR demonstrates accuracy and run-time perfor-
mance on par with the well-established and highly-optimized Faster R-
CNN baseline on the challenging COCO object detection dataset. More-
over, DETR can be easily generalized to produce panoptic segmentation
in a unified manner. We show that it significantly outperforms com-
petitive baselines. Training code and pretrained models are available at

htt

ps://github.com/fac rch/det

000-0003-0697 - 6664

End-to-End Object Detection with Transformers
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Cruise

[1] Source: Tesla Al Day 2021

[2] Source: Cruise Under the Hood 2021



https://youtu.be/j0z4FweCy4M
https://youtu.be/uJWN0K26NxQ

But Why? A Look into these “"AI"” Models

Breadth-first search Multi-layer perceptron
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https://www.javatpoint.com/ai-informed-search-algorithms

The Robustness Problem of NNs

Uniform illumination Our illumination

Captured

[1]

Stop Sign Speed 30
with low confidence with high confidence

A [3]

|

Adversarial The patient has a history of |
/ text substitution (9) lumbago and chronic alcohol
o > dependence and more recently
has been seen in several...
|
- Opioid abuse risk: Low

Steer left Steer right

Input Space

[1] “Optical adversarial attacks,” Gnanasambandam et al., ICCV, 2021.
[2] “"DeepXplore: Automated whitebox testing of deep learning systems,” Pei et al., SOSP, 2017.
[3] Cary et al., “Adversarial attacks on medical machine learning,” in Science, 2020.
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Robustness Verification as a Potential Remedy

Model
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Main Approaches and Common Challenges

GT: Stop
NN: Stop

GT: Stop

NN: 30 kph limit

Exact Verifier: Non-robust
Appr. Verifier: Non-robust
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State of the Art in NN Robustness Verification
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MLPs (or CNN/RNN variants) Transformers
Approximate ~10e6 neurons ' ~10e4 neurons
Verifier Image Classification (CIFAR-10) Sentiment Analysis (Yelp)
- ~10e5 neurons Lacking, but a network of size ~10e3
Exact Verifier Image Classification (CIFAR-10) should be verifiable

[1] Xu et al., “Enabling complete NN verification with rapid and massively parallel incomplete verifiers,” in ICLR, 2021.
[2] Tjeng et al., “Evaluating robustness of NNs with MIP," in ICLR, 2019.
[3] Shi et al., “Robustness verification for transformers,” in ICLR, 2020.
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Our Focus - Sparsemax Transformers
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[1] Martins et al., “From softmax to sparsemax,” in ICML, 2016.
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Reducing Robustness Verification to an Optimization Problem

Sparsemax Transformers
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MIQCP (Mixed Integer Quadratically

Constrained Programming)

min Dist, (x, x") O

s.t. x" € B,(x), ©
flx) =gt(x) Af(x') # gt(x). — )

(1) Find the min perturbation,
(2) within a budget, e.g., €

(3) where the perturbed input
causes a wrong prediction.



Accelerating Heuristics

« Interval analysis on Sparsemax activation' « Norm-space partitioning
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[1] A recent improvement in Wei et al., "Convex bounds on the softmax function with applications to robustness verification,” in AISTATS, 2023.
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Experiment — Lane Departure Warning

Direction and time
to lane departure
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Robustness Values

Extracted Features

Transformer

Neural Networks

Data Collection Data Processing Model Training Model Verification

[1] https://www.highd-dataset.com/.
[2] TTC: Time to collision.
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Results — Ablation Study and Accuracy Assessment

« On the proposed techniques
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» Classification and regression accuracy
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Results — Robustness Benchmark

Robustness Certificates (better if larger] Statistics from verifying 5 ReLU-MLPs

and 5 Sparsemax-Ts with 100 data points
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[1] Wang et. al., “Can CNNs be more robust than Transformers,” in ICLR, 2023.
[2] Bhojanapali et. al., “Understanding robustness of transformers for image classification,” in ICCV, 2021.
[3] Shao et. al., “On the adversarial robustness of vision transformers,” in UCLR, 2021.
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Summary

« Robustness is a safety-related concern in NNs.
« Our study focuses on exact robustness verification for a specific variant of Transformers.

« Robustness, as an application-oriented property, needs to be verified before NN deployment.

Limitations and Open Directions

« Softmax not considered =» Iterative bound tightening (e.g., with Branch-and-Bound)
« Small NNs and simple task = Real-world applications (e.g., via probabilistic verification)
« Point-wise analysis = Domain-covered assurance (e.g., with combinatorial testing)

« Design-time verification = Run-time verification (e.g., with different sensor modalities)
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Incomplete Verification due to Timeouts
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[1] The points marked with “Lower” give the lower bounds for the Transformer.
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