

Are Transformers More Robust? Towards Exact Robustness Verification for Transformers

SafeComp, 20.09.2023

Brian Hsuan-Cheng Liao

Systems Engineering R&D Corporate R&D DENSO AUTOMOTIVE Deutschland GmbH (DNDE)

<u>In collaboration with</u> Dr. Chih-Hong Cheng (Fraunhofer IKS) Dr. Hasan Esen (DNDE) Prof. Alois Knoll (Technical University of Munich)

Neural Networks Are Everywhere ...

Autonomous Driving Aircraft Autopiloting

Medical Diagnosis Surgical Robots

> [1] Source: Bloomberg. [2] Source: CeramTec.

Especially Transformers ...

^[1] Source: <u>Tesla AI Day 2021</u> [2] Source: <u>Cruise Under the Hood 2021</u>

But Why? A Look into these "AI" Models

Multi-layer perceptron

Transformer (self-attention)

The Robustness Problem of NNs

Robustness Verification as a Potential Remedy

Main Approaches and Common Challenges

• Challenge 1: The non-convex activations, e.g., ReLU

• Challenge 2: Emerging architectures and operations

State of the Art in NN Robustness Verification

	MLPs (or CNN/RNN variants)	Transformers
Approximate Verifier	~10e6 neurons ^[1] Image Classification (CIFAR-10)	~10e4 neurons ^[3] Sentiment Analysis (Yelp)
Exact Verifier	~10e5 neurons ^[2] Image Classification (CIFAR-10)	Lacking, but a network of size ~10e3 should be verifiable

[1] Xu et al., "Enabling complete NN verification with rapid and massively parallel incomplete verifiers," in ICLR, 2021.
[2] Tjeng et al., "Evaluating robustness of NNs with MIP," in ICLR, 2019.
[3] Shi et al., "Robustness verification for transformers," in ICLR, 2020.

Our Focus – Sparsemax Transformers

[1] Martins *et al.*, "From softmax to sparsemax," in *ICML*, 2016.

Reducing Robustness Verification to an Optimization Problem

Sparsemax Transformers

MIQCP (Mixed Integer Quadratically Constrained Programming)

(1)

(2)

Accelerating Heuristics

• Interval analysis on Sparsemax activation^[1]

٠

[1] A recent improvement in Wei et al., "Convex bounds on the softmax function with applications to robustness verification," in AISTATS, 2023.

Norm-space partitioning

Experiment – Lane Departure Warning

Results – Ablation Study and Accuracy Assessment

• On the proposed techniques

• Classification and regression accuracy

Results – Robustness Benchmark

Statistics from verifying 5 ReLU-MLPs and 5 Sparsemax-Ts with 100 data points

	Mean	Var.	No. Max (0.01)
ReLU-MLPs			100
Sparsemax-Ts	0.0041	0.0006	69

- The Transformer seems less robust than the MLP.
- A recent empirical work in vision tasks concludes similarly.^[1]
- Yet, some others disagree.^[2, 3]

[1] Wang *et. al.*, "Can CNNs be more robust than Transformers," in *ICLR*, 2023. [2] Bhojanapali *et. al.*, "Understanding robustness of transformers for image classification," in *ICCV*, 2021. [3] Shao *et. al.*, "On the adversarial robustness of vision transformers," in *UCLR*, 2021.

Summary

- Robustness is a safety-related concern in NNs.
- Our study focuses on exact robustness verification for a specific variant of Transformers.
- Robustness, as an application-oriented property, needs to be verified before NN deployment.

Limitations and Open Directions

- Softmax not considered → Iterative bound tightening (e.g., with Branch-and-Bound)
- Small NNs and simple task \rightarrow Real-world applications (e.g., via probabilistic verification)
- Point-wise analysis → Domain-covered assurance (e.g., with combinatorial testing)
- Design-time verification \rightarrow Run-time verification (e.g., with different sensor modalities)

DENSO Crafting the Core

Incomplete Verification due to Timeouts

[1] The points marked with "Lower" give the lower bounds for the Transformer.

