

ATTRIBUTE REPAIR FOR THREAT PREVENTION SAFECOMP 2023

Dejan Ničković AIT Austrian Institute of Technology

Joint work with Thorsten Tarrach, Masoud Ebrahimi, Sandra König, Christoph Schmittner and Roderick Bloem

MOTIVATION

Larger attack surfaces

New security standards ISO/SAE 21434

 \rightarrow Security as first-class citizen from early stages of design

THREATGET

- THREATGET tool for threat management and analysis
- Reusable analysis results
- Traceable mitigations and design decisions
- Up-to-date threat catalogue

https://www.threatget.com/

Commercial tool, free academic license

THREAT MODELING WITH THREATGET

75 https://www.threatget.com/ THREATGET **THREATGET** Database **THREATGET Model** Verdicts IoT Device Zone Threat 1 ELEMENT e0:"Device"{ 0 ø "Privacy Asset" = "yes Temprature Confidentiality "Authorization" != "yes What to do with Sensor Asset "Encrypted" != "yes" } Wireless identified threats? Connector Wireless @ Wire Connector Connector 스 onnecte Control Wireless IoT Field Wire System Connector Gateway Connector Firewall Onnector WebServer Wireles Mobile Connector Phone Connector Threat N ELEMENT e0:"Device"{ Threat N Wireless Connector "Managed" IN 0 ["undefined", "no"] & Cryptographic Motion "Authorization" != "strong" } Asset Sensor **THREATGET Application**

MODEL REPAIR

MODEL REPAIR

25/09/2023

SYSTEM MODEL

ATTRIBUTE REPAIR

Attribute	Value	Weight
Authentication	No	100
Encryption	Yes	10

- We repair **security attributes** of elements and connectors
- We are not allowed to changed the structure of the model

SAT

• Problem of determining if there exists an interpretation that satisfies a given Boolean formula

Example

$$\begin{split} \varphi_{1} &= p \wedge (q \vee r) \\ \varphi_{2} &= p \wedge (q \wedge r) \wedge (q \wedge \neg r) \\ solve(\varphi_{1}) &= SAT \\ solve(\varphi_{2}) &= UNSAT \\ witness(\varphi_{1}) &= (p \rightarrow 1, q \rightarrow 1, r \rightarrow 0) \end{split}$$

WEIGHTED MAXSAT

• Problem of determining the subset of clauses of a Boolean formula that can be made true by an interpretation and that minimizes the cost.

Weighted MaxSAT

Given a set of formulas $\{\varphi_1, ..., \varphi_m\}$ and $\{\psi_1, ..., \psi_p\}$ and a set of real-valued costs $\{c_1, ..., c_p\}$, weighted MaxSAT consists in finding $K \subseteq \{1, ..., p\}$ such that: (1) $\wedge_{i \in \{1,...,m\}} \varphi_i \wedge \wedge_{i \in K} \psi_i$ is SAT (2) $\Sigma_{i \in \{1,...,p\}-K} c_i$ is minimized

$$\begin{split} \varphi_{1} &= (p \land q) \lor \neg r \\ \psi_{1} &= r, c_{1} = 5 \\ \psi_{2} &= p \land \neg q, c_{2} = 2 \\ solve(\varphi_{1} \land \psi_{1} \land \psi_{2}) &= UNSAT \\ maxsat_solve(\varphi_{1} \land \psi_{1} \land \psi_{2}) &= SAT \\ K &= \{1\} \\ cost(\varphi_{1} \land \psi_{1} \land \psi_{2}) &= 2 \\ witness(\varphi_{1} \land \psi_{1} \land \psi_{2}) &= (p \rightarrow 1, q \rightarrow 1, r \rightarrow 1) \end{split}$$

25/09/2023

25/09/2023

Threat N

ATTRIBUTE REPAIR AC VIEW MAXSAT

IMPLEMENTATION AND CASE STUDIES

25/09/2023

IMPLEMENTATION

- Java implementation as an external module to THREATGET
- Z3 SMT solver used for MaxSAT

SMART HOME IOT

Verdict	SAT
# formulas (F)	169
# rep Fs	27
# unrep Fs	9
# Fs wo threat	133
Total cost	77
Time	47

SMART HOME IOT

Example of repairable threat:

"Attacker can deny the malicious act and remove the attack footprints leading to repudiation issues"

- $\exists e. type(e) = Firewall \land v(e, Activity Logging)$
- $\in \{Missing, Undefined\}$

Repair: set Activity Logging to Yes

Verdict	SAT
# formulas (F)	169
# rep Fs	27
# unrep Fs	9
# Fs wo threat	133
Total cost	77
Time	47

SMART HOME IOT

Example of unrepairable threat:

"Spoof IP"

 $\exists e_1, e_2, c. type(c) = Internet \ Connection \land src(c) \\ = e_1 \land tgt(c) = e_2$

Cannot remove the internet connection with attributes

Verdict	SAT
# formulas (F)	169
# rep Fs	27
# unrep Fs	9
# Fs wo threat	133
Total cost	77
Time	47

KEYFOB

	All threats		Subset	
	Full	Heur	Full	Heur
Verdict	UNSAT	SAT	SAT	SAT
Total # Fs	165	165	21	21
# rep Fs	n/a	25	4	4
# unrep Fs	n/a	7	0	0
# Fs wo threat	n/a	133	17	17
Cost	n/a	33	9	11
Time (s)	4	103	10	26

VEHICULAR TELEMATIC GATEWAY

Threat rule with flow (path) property

	With flow	WO flow
Verdict	SAT	SAT
Total # Fs	95	82
# rep Fs	19	18
# unrep Fs	23	21
# Fs wo threats	53	43
Cost	57	57
Time (s)	497	118

CONCLUSIONS

- Automated threat prevention
 - Repairing security-related system attributes
- Widely applicable
- SAT formulation of flows not optimal

- Model repair
 - Address limitation of attribute repair
 - Define a set of meaningful repair patterns

THANK YOU!

Lecturer, Date

