

Online Quantization Adaptation for Fault-Tolerant Neural Network Inference

<u>Michael Beyer</u>^{1,2}, Jan Micha Borrmann¹, Andre Guntoro¹, Holger Blume²

¹Bosch Corporate Research, Robert Bosch GmbH ²Institute of Microelectronics Systems, Leibniz University Hannover

SafeComp 2023 🕞 BOSCH

Traditional redundancy-based methods
 High overheads (cost, area, power)

- Traditional redundancy-based methods
- Adapt to HW faults by retraining NNs

- High overheads (cost, area, power)
- Not possible during runtime

- Traditional redundancy-based methods
- Adapt to HW faults by retraining NNs
- Masking faulty HW elements

- High overheads (cost, area, power)
- Not possible during runtime
- > Not guaranteed to maintain algorithmic performance

Dedicated Hardware Features

Quantization

- Floating-Point \rightarrow Fixed-Point
- Tolerance to reduced precision computations

Dedicated Hardware Features

Quantization

- Floating-Point \rightarrow Fixed-Point
- Tolerance to reduced precision computations

Dedicated Hardware Features

Multi-bit-width Support

- E.g., 8-bit and 2x 4-bit
- Increased compute performance and flexibility for different workloads

Dedicated Hardware Features

Lightweight Fault Tolerance

Michael Beyer | michael.beyer2@de.bosch.com | 2023-09-22 | 42nd International Conference on Computer Safety, Reliability and Security

Method

Method Background – Multi-Bit-Width MAC Unit

Baseline Multiply-Accumulate (MAC) unit:

 $acc = acc + a \cdot b$

Baseline MAC Unit

[1] Beyer, M., Gesper, S., Guntoro, A., Payá-Vayá, G., Blume, H., "Exploiting Subword Permutations to Maximize CNN Compute Performance and Efficiency", 34th IEEE International Conference on Application-specific Systems, Architectures and Processors (ASAP), 2023.

Method Background – Multi-Bit-Width MAC Unit

Baseline Multiply-Accumulate (MAC) unit:

 $acc = acc + a \cdot b$

With Multi-bit-width support:

 $acc_1 = acc_1 + a_1 \cdot b_1$ $acc_0 = acc_0 + a_0 \cdot b_0$

MAC Unit with Multi-Bit-Width and Subword Permutation Support [1]

 Beyer, M., Gesper, S., Guntoro, A., Payá-Vayá, G., Blume, H., "Exploiting Subword Permutations to Maximize CNN Compute Performance and Efficiency", 34th IEEE International Conference on Application-specific Systems, Architectures and Processors (ASAP), 2023.

Method Background – Multi-Bit-Width MAC Unit

Baseline Multiply-Accumulate (MAC) unit:

 $acc = acc + a \cdot b$

With Multi-bit-width support:

 $acc_1 = acc_1 + a_1 \cdot b_1$ $acc_0 = acc_0 + a_0 \cdot b_0$

Computations requiring the full precision:

$$a \cdot b = a_1 \cdot b_1 \cdot 2^n + a_1 \cdot b_0 \cdot 2^{\frac{n}{2}} + a_0 \cdot b_1 \cdot 2^{\frac{n}{2}} + a_0 \cdot b_0$$

MAC Unit with Multi-Bit-Width and Subword Permutation Support [1]

[1] Beyer, M., Gesper, S., Guntoro, A., Payá-Vayá, G., Blume, H., "Exploiting Subword Permutations to Maximize CNN Compute Performance and Efficiency", 34th IEEE International Conference on Application-specific Systems, Architectures and Processors (ASAP), 2023.

19 Michael Beyer | michael.beyer2@de.bosch.com | 2023-09-22 | 42nd International Conference on Computer Safety, Reliability and Security

Processing Element

Processing Element

Leverage inherent redundancy for lightweight fault tolerance

Processing Element

- Leverage inherent redundancy for lightweight fault tolerance
- Perform computations in fail-degraded operating mode
 → uphold compute capability with reduced precision

Hardware fault

- Leverage inherent redundancy for lightweight fault tolerance
- Perform computations in fail-degraded operating mode
 → uphold compute capability with reduced precision

- Leverage inherent redundancy for lightweight fault tolerance
- Perform computations in fail-degraded operating mode
 → uphold compute capability with reduced precision

- Leverage inherent redundancy for lightweight fault tolerance
- Perform computations in fail-degraded operating mode
 → uphold compute capability with reduced precision

Method Rounding Modes

Truncate

- Straightforward solution, simple to implement
- Adds bias and results in quantization error with non-zero mean

Method Rounding Modes

Truncate

- Straightforward solution, simple to implement
- Adds bias and results in quantization error with non-zero mean

Convergent Rounding

- Round ties to even
- Overestimation of values

Method Rounding Modes

Truncate

- Straightforward solution, simple to implement
- Adds bias and results in quantization error with non-zero mean

Convergent Rounding

- Round ties to even
- Overestimation of values

Round to Zero

- Preserve overall distribution of weights
- Attenuation rather than overestimation of values

Experiments

Experiments Experimental Setup – Hardware Architecture

Scalable vector processor as HW target

Schematic of the V²PRO Accelerator System [2]

[2] G. B. Thieu et al., "ZuSE-KI-AVF: Application-Specific AI Processor for Intelligent Sensor Signal Processing in Autonomous Driving," in 2023 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2023.

30 Michael Beyer | michael.beyer2@de.bosch.com | 2023-09-22 | 42nd International Conference on Computer Safety, Reliability and Security

Experiments Experimental Setup – Hardware Architecture

Scalable vector processor as HW target

Mapping of convolutions on the V²PRO Accelerator System [2]

Schematic of the V²PRO Accelerator System [2]

[2] G. B. Thieu et al., "ZuSE-KI-AVF: Application-Specific AI Processor for Intelligent Sensor Signal Processing in Autonomous Driving," in 2023 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2023.

31 Michael Beyer | michael.beyer2@de.bosch.com | 2023-09-22 | 42nd International Conference on Computer Safety, Reliability and Security

Experiments Experimental Setup – Hardware Architecture

- Scalable vector processor as HW target
- Evaluate different HW configurations

Mapping of convolutions on the V²PRO Accelerator System [2]

Schematic of the V²PRO Accelerator System [2]

[2] G. B. Thieu et al., "ZuSE-KI-AVF: Application-Specific AI Processor for Intelligent Sensor Signal Processing in Autonomous Driving," in 2023 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2023.

32 Michael Beyer | michael.beyer2@de.bosch.com | 2023-09-22 | 42nd International Conference on Computer Safety, Reliability and Security

- ResNet18 [3] & VGG16 [4] (quantized to 8-bit)
 - CIFAR-10 [5] and GTSRB [6]

- ResNet18 [3] & VGG16 [4] (quantized to 8-bit)
 - CIFAR-10 [5] and GTSRB [6]
- Simulate permanent errors & evaluate NN prediction accuracy for different error rates (n = 200)

- ResNet18 [3] & VGG16 [4] (quantized to 8-bit)
 - CIFAR-10 [5] and GTSRB [6]
- Simulate permanent errors & evaluate NN prediction accuracy for different error rates (n = 200)
- Two error mitigation mechanisms for computations on faulty PEs:
 - 1. OQA: Values are re-quantized online, computations are performed with reduced precision
 - 2. Discard: Values are discarded and set to zero

- ResNet18 [3] & VGG16 [4] (quantized to 8-bit)
 - CIFAR-10 [5] and GTSRB [6]
- Simulate permanent errors & evaluate NN prediction accuracy for different error rates (n = 200)
- Two error mitigation mechanisms for computations on faulty PEs:
 - 1. OQA: Values are re-quantized online, computations are performed with reduced precision
 - 2. Discard: Values are discarded and set to zero

Schematic of a box plot. Higher median and lower variability is better.

ResNet18 (CIFAR-10)

Higher median and lower variability is better

37 Michael Beyer | michael.beyer2@de.bosch.com | 2023-09-22 | 42nd International Conference on Computer Safety, Reliability and Security

ResNet18 (CIFAR-10)

Higher median and lower variability is better

38 Michael Beyer | michael.beyer2@de.bosch.com | 2023-09-22 | 42nd International Conference on Computer Safety, Reliability and Security

ResNet18 (CIFAR-10)

Higher median and lower variability is better

39 Michael Beyer | michael.beyer2@de.bosch.com | 2023-09-22 | 42nd International Conference on Computer Safety, Reliability and Security

ResNet18 (CIFAR-10)

Higher median and lower variability is better

40 Michael Beyer | michael.beyer2@de.bosch.com | 2023-09-22 | 42nd International Conference on Computer Safety, Reliability and Security

ResNet18 (CIFAR-10)

Higher median and lower variability is better

41 Michael Beyer | michael.beyer2@de.bosch.com | 2023-09-22 | 42nd International Conference on Computer Safety, Reliability and Security

ResNet18 (CIFAR-10)

Higher median and lower variability is better

42 Michael Beyer | michael.beyer2@de.bosch.com | 2023-09-22 | 42nd International Conference on Computer Safety, Reliability and Security

ResNet18 (CIFAR-10)

VGG16 (CIFAR-10)

Higher median and lower variability is better

43 Michael Beyer | michael.beyer2@de.bosch.com | 2023-09-22 | 42nd International Conference on Computer Safety, Reliability and Security

ResNet18 (CIFAR-10)

VGG16 (CIFAR-10)

Higher median and lower variability is better

44 Michael Beyer | michael.beyer2@de.bosch.com | 2023-09-22 | 42nd International Conference on Computer Safety, Reliability and Security

ResNet18 (CIFAR-10)

VGG16 (CIFAR-10)

Higher median and lower variability is better

45 Michael Beyer | michael.beyer2@de.bosch.com | 2023-09-22 | 42nd International Conference on Computer Safety, Reliability and Security

ResNet18 (CIFAR-10)

VGG16 (CIFAR-10)

Higher median and lower variability is better

46 Michael Beyer | michael.beyer2@de.bosch.com | 2023-09-22 | 42nd International Conference on Computer Safety, Reliability and Security

PER in %

PER in %

GTSRB

Higher median and lower variability is better

47 Michael Beyer | michael.beyer2@de.bosch.com | 2023-09-22 | 42nd International Conference on Computer Safety, Reliability and Security

© Robert Bosch GmbH 2023. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

6.0

PER in %

VGG16

Higher median and lower variability is better

48 Michael Beyer | michael.beyer2@de.bosch.com | 2023-09-22 | 42nd International Conference on Computer Safety, Reliability and Security

VGG16

Higher median and lower variability is better

4.9 Michael Beyer | michael.beyer2@de.bosch.com | 2023-09-22 | 42nd International Conference on Computer Safety, Reliability and Security

Higher median and lower variability is better

50 Michael Beyer | michael.beyer2@de.bosch.com | 2023-09-22 | 42nd International Conference on Computer Safety, Reliability and Security

Higher median and lower variability is better

51 Michael Beyer | michael.beyer2@de.bosch.com | 2023-09-22 | 42nd International Conference on Computer Safety, Reliability and Security

© Robert Bosch GmbH 2023. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

BOSCH

Conclusion

 OQA can preserve a NN's classification performance consistently

53 Michael Beyer | michael.beyer2@de.bosch.com | 2023-09-22 | 42nd International Conference on Computer Safety, Reliability and Security

- OQA can preserve a NN's classification performance consistently
- Low variability of NN prediction performance
 - Higher confidence in predictions made by NN executed on faulty HW

- OQA can preserve a NN's classification performance consistently
- Low variability of NN prediction performance
 - Higher confidence in predictions made by NN executed on faulty HW
- NNs retain at least original error-free accuracy when considering top-2 predictions

- OQA can preserve a NN's classification performance consistently
- Low variability of NN prediction performance
 - Higher confidence in predictions made by NN executed on faulty HW
- NNs retain at least original error-free accuracy when considering top-2 predictions
- Lightweight solution through dual-use of existing HW

Thank you

michael.beyer2@de.bosch.com

References

- [1] M. Beyer, S. Gesper, A. Guntoro, G. Payá-Vayá, H. Blume, "Exploiting Subword Permutations to Maximize CNN Compute Performance and Efficiency", 34th IEEE International Conference on Application-specific Systems, Architectures and Processors (ASAP), 2023.
- [2] G. B. Thieu et al., "ZuSE-KI-AVF: Application-Specific AI Processor for Intelligent Sensor Signal Processing in Autonomous Driving," in 2023 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2023.
- [3] K. He, et al., "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
- [4] K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," arXiv preprint arXiv:1409.1556, 2014.
- [5] A. Krizhevsky, "Learning Multiple Layers of Features from Tiny Images," Technical report (2009).
- [6] J. Stallkamp, M. Schlipsing, J. Salmen, C. Igel, "Man vs. computer: benchmarking machine learning algorithms for traffic sign recognition," Neural Netw. 32, 323–332 (2012).

