

ASSURING AUTONOMY

The Impact of Training Data Shortfalls on Safety of AI-Based Clinical Decision Support Systems

Philippa Ryan, Berk Ozturk, Tom Lawton, Ibrahim Habli

Introduction

- Developing ML based diabetes comorbidity predictor
 - Provides "independent second opinion" on patient
- Training data is anonymized patient records
 - But hard to ensure balance, reduce bias
- What is safety impact? How do we mitigate this?
- Safety analysis
- Discussion and next steps
- Funded by
 - EPSRC Assuring Responsibility-Trustworthy Autonomous Systems
 - LRF Assuring Autonomy International Programme

Training Data for ML

- All Machine Learning needs good quality training data
 - Data embodies the functionality you want it to learn
 - Synthetic user generated data
 - Issues with validity (values, representative of reality)
 - Better for coverage (generate cases)
 - Real world datasets
 - Fewer issues with validity for individual data points
 - Harder to argue future coverage and distribution
- Any problems with training data reflected in final ML

The training data Connecting Bradford - database

43,000+ data training rows used of Type II Diabetes patients

- Reduced feature space (14,000+) to 20 FOI
 - Reviewed by clinician for validation

What can we do?

Pre-process and synthesize data

- Missing values common problem with medical diagnosis ML
- Can compensate => data imputation
 - Lots of methods e.g., average, median
 - Bag imputation
 - Uses ML to predict likely values for missing cases
- But can introduce bias
- Concern is understanding *system* risk
- Not just maximise metrics
- Bias considerations must consider system failures

Training process

- Data selection
 - 42,000+ data training rows used of Type II Diabetes patients
 - Reduced feature space (14,000+) to 20 FOI
 - Removed duplicate records
 - Normalised values
 - Compensated missing values using bag imputation
- Trained multiple ML models
 - Naïve Bayes, NN, random forest, SVM
- Ensemble gave best results
 - Accuracy and Kappa values
- NICE guidelines used

Feature Importance Levels

body_mass_index_observation neutrophil count platelet_count_observation serum cholesterol level gfr_calculated_abbreviated_mdrd serum alkaline phosphatase level haemoglobin_a1c_level_ifcc_standardised serum alanine aminotransferase level serum_sodium_level serum creatinine level monocyte_count_observation red_blood_cell_count mean_cell_volume serum_albumin_level total white blood count serum_urea_level lymphocyte count serum_total_bilirubin_level serum potassium level eosinophil count observation

Hazards

Summary

- DCP output could influence decision
- False positive
 - Patient categorised high risk when they are not
 - Provided with medication they don't need with side-effects (severe)
- False negative
 - Patient categorised low risk when they are not
 - Risk of heart attack/stroke (catastrophic)
- Likelihood of incorrect diagnosis from DCP hard to predict
 - Varies per patient

Safety analysis HAZOP type

- "Flow" training data into the training process
- Guideword examples:
 - More indicates a bias in the data, e.g., over representation of particular patient group in the dataset
 - No or Not FOI or set of FOIs are missing
 - Less fewer examples of FOI than are desirable for good performance are present
 - Early/Before indicates that a FOI may be present but out of date with respect to the co-morbidity presenting itself
 - Reverse opposite diagnosis included

Guideword	Deviation	Cause	Effect	Mitigation
No or not	Samples for eth-	No/limited pa-	ML not trained or	Manual review of
	nic group not in-	tients of ethnic	verified adequately	DB by expert, show
	cluded in train-	group were pa-	for ethnic group	clinician prototypi-
	ing data (TD)	tients	with higher genetic	cal examples, pa-
			risk of hypertension	tient discussion
Part of	Partially missing	BMI not consis-	ML performance	Use bag imputation
	BMI in TD sam-	tently recorded	biased based on the	for TD records to
	ples		data imputation	reduce bias, recom-
			method used, leads	mend collection of
			to poor performance	BMI for future TD,
			for high or low BMI	show clinician proto-
			patients	type examples, pa-
				tient discussion
More	Over represen-	Most patients	Prediction biased to-	Manual review of
	tation in TD	examined had	wards patients with	DB by expert, train-
	of high BMI	high BMI	high BMI, meaning	ing samples picked
	patients		patients with low	across all ranges,
			BMI have less accu-	show clinician pro-
			rate predictions	totype examples,
				patient discussion
More	Over representa-	Over diagnosis	TD dominated by	Manual review of
	tion in TD of cer-	by trained ML	ethnic group with	DB by expert, show
	tain ethnic group	for patients of	genetic disposition	clinician prototype
		other ethnic	to hyper tension	examples, patient
		groups		discussion
Early/	BMI data is	DB not kept up	ML underestimates	TD selected from
Before	out of date and	to date. TD sam-	likelihood of hyper-	samples near to
and More	training patients	pled from wrong	tension	hypertension diag-
	have changed	part of patient		nosis, manual review
	BMI by time of	history		of DB by expert.
	diagnosis			patient discussion
Instead	BMI value no	Performance	Wrong prediction	Show clinician FOI
Instead	longer highest	outlier from ML	for hypertension	from training and
	FOI for some		In hypertension	for each prediction
	FOI distribution			at point of use po
	I OI distribution			tiont discussion
		1		tient discussion

Discussion

- Prototypical examples
 - Issue of patient confidentiality
 - Would need to obfuscate these further
- Limited to 20 FOI during training may miss data patterns
 - Some FOI result of hypertension not cause
- Missing data can be significant
 - Patient too unwell for tests
 - Long term trend in their health
 - Or could just be poor record keeping!
 - How do we incorporate in ML process?
- Scalability
 - How to perform manual review of such a large set of data?

Summary

- Issues with training data lead to latent ML faults
 - Subtle and varied
- Need to understand risk not just maximise metrics
- System focused hazard analysis
 - Can help identify risk from bias with more clarity
 - We can put *targeted* mitigations in place
- May be complex trade-offs
- Next steps developing DCP for myocardial infarction (heart attacks)

ASSURING AUTONOMY INTERNATIONAL PROGRAMME