

Evaluation of Parameter-based Attacks against Embedded Neural Networks with Laser Injection

M. Dumont*, K. Hector*, P-A. Moellic*,

J-M. Dutertre+, S. Pontié*

* CEA LETI, + Mines Saint-Etienne

Context

Ubiquitous AI ML models everywhere... A founding principle of *Trustworthy* AI

European **AI Act:** upcoming security certification actions

Context

Al grows too fast without safety and security concerns

- Lot of activities related to Cybersecurity of AI & Standardization
- GDPR, AI Act, Cyber Res. Act, NIS2, Cyber Act...
- → ENISA reports focused on Cybersecurity of AI Systems

Al system certification: critical challenges

- Urgent needs to develop robust evaluation protocols
- practical evaluations

European Al Act & Cybersecurity-based regulatory frameworks upcoming security certification actions

Security of Machine Learning

Adversarial & Privacy-Preserving Machine Learning

State-of-the-Art: attacks everywhere, everything

Confidentiality / Integrity / Availability

Security of Machine Learning

A Complex ATTACK SURFACE

OUR CLAIM A model is not *just* an abstraction

ATTACK SURFACE

ALGORITHM / ABSTRACTION

API-based Attacks White-Box / Black-Box

Security of Machine Learning

A Complex ATTACK SURFACE

OUR CLAIM

A model is not *just* an abstraction **→** SW / HW implementations

Background & Positioning

HAT

Weight-based Adversarial Attacks

Target internal parameters stored in memory

- Deep Neural Network parameters: quantified and stored in memory (e.g., DRAM, Flash)
- ✤ Fault Injection Attacks: precisely alter the value of a parameter → bit-level

Weight-based Adversarial Attacks

Target internal parameters stored in memory

- Main reference: Bit-Flip Attack BFA¹
 - First demonstration: RowHammer² attack (CPU, DRAM)
 - Former works³ on evaluating BFA
- ♦ Safety analysis → Random bit-flips
- **\Rightarrow** BFA = **Adversarial** bit-flips **\rightarrow** Faults on the most sensitive parameters

Gradient-based ranking of w $\nabla_w \mathcal{L}$

Rakin et al., *Bit-flip attack: Crushing neural network...* IEEE/CVF ICCV 2019
 Yao, et al. *DeepHammer...* USENIX 2020
 Hector *et al.*, *A closer look at evaluating the BFA...* IEEE IOLTS 2022

Positioning

OUR SCOPE

- ✤ Security evaluation and characterization context → security evaluator point of view
- Parameter-based threats for NN embedded in 32-bit MCU, Cortex M.
 - e.g., widely used in IoT applications
 - ✤ Flash memory → other fault model
- Laser Fault Injection (LFI)
 - Advanced, very spatially and temporally accurate injection means
 - reference technique for many HW security evaluation centers
- State of the Art
 - Most efforts rely on simulation only
 - Practical exp: RowHammer attacks (CPU, DRAM)
 - Very few and partial works on LFI on MCU against embedded DNN¹

Evaluator assumptions

♦ OBJECTIVES

- Evaluate model's robustness vs precise fault injections
- Decreasing the average accuracy (test set)
- Generic untargeted scenario

✤ HYPOTHESIS Security testing context → evaluator simulates worst-case adversary

- Perfect knowledge of the model (white-box attack)
- Query the model without limitation
- Full access to the device (or clones of the device)
- Can perform elementary characterizations (adapt & optimize the fault injection set-up)

Fault Model

- Single bit-set fault model on Flash memory $[0 \rightarrow 1 | 1 \rightarrow 1]$
 - Accurate fault model relevant for LFI
 - Explained and demonstrated for NOR-Flash memory of Cortex-M MCU by Colombier et al.¹

Target & Laser bench

- ARM Cortex-M3 (90nm CMOS) | 8 MHz | 128 kB of Flash memory | Chip = 3 x 2.5 mm
- For LFI: MCU packaging is opened (engraving tools, acid...)
- Double spots laser platform
 - Near infrared (IR), λ =1, 064 nm, Laser spot diameter [1.5 15] μm. Max power = 1, 700mW.
 - Delay (trigger/shot) = few nanoseconds
 - Infrared camera

(1) Colombier, et al. Laser-induced Single-bit Faults in Flash Memory..., IEEE HOST 2019.

Datasets & Models

- Cortex M3 with high memory constrains
- Work with 8-bits quantized models
- Deployment: open-source platform NNoM: Neural Network on Microcontrollers
- Use of a Multilayer-Perceptron (MLP) trained on MNIST
 - ♦ Input compression on \mathbb{R}^{50} (PCA)
 - 1 hidden layer with 10 neurons
 - 1 output layer with 10 neurons

Weight-based adversarial attack with LFI

What, when, where to shoot?

Strike parameters stored in Flash memory

♦ Flash Memory → Model architecture and internal parameters

 \Rightarrow SRAM \Rightarrow intermediate calculations (e.g., activations)

Neuron → weighted sum

```
while (rowCnt){
      //pA : address, stored input
      //pB : address, stored weight
      for (int j = 0; j < dim_vec; j++)</pre>
       { //loop on all neuron
       parameters
          q7_t inA = *pA++;
                             //load
       input to inA, address increment
          q7_t inB = *pB++; //load
       weight to inB, address increment
          ip_out += inA * inB; //neuron
        weighted sum
      *pO++ = (q7_t)_NNOM_SSAT((ip_out)
        >> out_shift), 8);
      rowCnt --;}
10
```


Assembly code, of line 6

C code, weighted-sum in a dense layer

Y Y Y

What, when, where to shoot?

Mapping the Flash memory

◆ First experiment with a 4-weight neuron → alter all the bits following the **bit-set model**

 $\bigstar 0 \rightarrow 1 // 1 \rightarrow 1$

What and where to shoot?

Target a MLP model

- Brute-Force approach
- \rightarrow target all the bit from all the weights
- ♦ MLP model → 4960 bits
- By targeting 1 bit line at a given X-position of the laser, only weights on the same address column are faulted with a bit-set
- Significant accuracy drops for MSB locations

Combining LFI and simulation

Advanced Guided-LFI

- Brute-Force strategy is impractical with deeper models
- ◆ IDEA: adapt the BFA principle to our fault model → BSCA = Bit-Set Constrained Attack
- Target model M. W weights matrix. Adversarial budget S (max number of faults)
- FOR EACH weight column index c, bit line index b
 - ♦ #1. BFA ranks the most sensitive bits of **W** according to $\nabla_b \mathcal{L}$
 - ✤ #2. Exclude the bits already set to 1 and not related to c and b.
 - ✤ #3. Pick the best bit-set and perform the fault permanently in M.
 - ✤ #4. Repeat the process until reaching S
 - ♦ Repeat over c and b → KEEP WORST ACCURACY

Combining LFI and simulation

Advanced Guided-LFI

Simulation over weight columns (« best »: m=2)

How practical LFI fit with simulations (BSCA)?

Discussions & Conclusion

0

Discussions & conclusion

Exploiting Fault Injection for Confidentiality Threats

- ♦ BFA + RowHammer for model extraction scenario → extract partial parameter values¹
- We demonstrated Model Extraction with the BSCA
 - ESORICS / SECAI Workshop²
 - ◆ Basic idea: Safe Error Attack principle → guess bit value whether the fault changes the prediction or not (w.r.t. the normal behavior)

Limitations

- Model complexity is not such a problem \rightarrow complexity of Flash memory is the big challenge
- Further experiments need to be focused on other targets (e.g., Cortex M4 and M7)
- ♦ When to shoot → smart trigger with side-channel analysis?

(1) Rakin, et al. DeepSteal. IEEE S&P 2022

(2) Hector, et al. Fault Injection and Safe-Error Attack for Extraction of Embedded Neural Network Models. ESORICS/SECAI 2023.

Discussions & conclusion

Maturity of Parameter-based Attacks

- Parameter-based attack still lacks of maturity
- SotA: limitations, improvements, alternatives
- ♦ Future works → considering or combining more attack methods to improve evaluation

Extend to practical evaluation of protections

- Are generic countermeasures against fault injection relevant?
- Practical evaluation of specific BFA-oriented defenses
 - ✤ weight clipping, clustering-based quantization, code-based detectors, adv training...
- As for adversarial examples, the definition of sound evaluations of defenses is highly important to disseminate security guidance & future certification actions

Thank you for your attention

Support & Funding

EU project InSecTT

✓ French ANR, IRT **Nanoelec**

✓ French ANR **PICTURE** program

This work benefited from the French

Jean Zay supercomputer with the AI dynamic access program.