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Context

Al grows too fast without safety and security concerns

Regulation

» Lot of activities related to Cybersecurity of Al & Standardization * * *

 GDPR, Al Act, Cyber Res. Act, NIS2, Cyber Act...
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 => ENISA eports focused on Cybersecurity of Al Systems

Al system certification: critical challenges
European Al Act &

< Urgent needs to develop robust evaluation protocols Cybersecurity-based

regulatory frameworks
upcoming security
certification actions

< practical evaluations




Security of Machine Learning

Adversarial & Privacy-Preserving Machine Learning

State-of-the-Art: attacks everywhere, everything

deployment

Confidentiality / Integrity / Availability
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Security of Machine Learning

A Complex ATTACK SURFACE

OUR CLAIM
A model is not just an abstraction

ATTACK SURFACE

ALGORITHM / ABSTRACTION

APIl-based Attacks
White-Box / Black-Box




Security of Machine Learning

A Complex ATTACK SURFACE

OUR CLAIM
A model is not just an abstraction = SW /HW implementations

ATTACK SURFACE

ALGORITHM / ABSTRACTION IMPLEMENTATION / PHYSICAL

API-based Attacks Implementation-based Attacks
White-Box / Black-Box Physical Attacks (side-channel, fault injection)
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Weight-based Adversarial Attacks

Target internal parameters stored in memory

¢ Deep Neural Network parameters: quantified and stored in memory (e.g., DRAM, Flash)

*¢ Fault Injection Attacks: precisely alter the value of a parameter = bit-level
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Weight-based Adversarial Attacks

Target internal parameters stored in memory

— VGG11
—— ResNet-20

10 bit-flips =» useless model
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¢ Main reference: Bit-Flip Attack — BFA?

+* First demonstration: RowHammer? attack (CPU, DRAM)
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** Former works? on evaluating BFA

Accuracy (%)
Ln
L)

o+
=]
]

+* Safety analysis =& Random bit-flips
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® (1) Rakin et al., Bit-flip attack: Crushing neural network... IEEE/CVF ICCV 2019
MIR®* (2) Yao, et al. DeepHammer... USENIX 2020
(3) Hector et al., A closer look at evaluating the BFA... IEEE IOLTS 2022 9



Positioning

OUR SCOPE

¢ Security evaluation and characterization context = security evaluator point of view

¢ Parameter-based threats for NN embedded in 32-bit MCU, Cortex M.
** e.g., widely used in 10T applications
** Flash memory = other fault model

+* Laser Fault Injection (LFI)
** Advanced, very spatially and temporally accurate injection means

¢ reference technique for many HW security evaluation centers

+* State of the Art
*¢* Most efforts rely on simulation only
¢ Practical exp: RowHammer attacks (CPU, DRAM)
¢ Very few and partial works on LFl on MCU against embedded DNN!

.i?i. (1) Hou, et al. Security Evaluation of Deep Neural Network Resistance against Laser Fault Injection, IPFA 2020
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Assumptions & Experimental Setups

Evaluator assumptions

¢ OBJECTIVES
¢ Evaluate model’s robustness vs precise fault injections
+* Decreasing the average accuracy (test set)

** Generic untargeted scenario

** HYPOTHESIS Security testing context = evaluator simulates worst-case adversary
+* Perfect knowledge of the model (white-box attack)
** Query the model without limitation
+* Full access to the device (or clones of the device)

¢ Can perform elementary characterizations (adapt & optimize the fault injection set-up)

12



Assumptions & Experimental Setups

Fault Model

+* Single bit-set fault model on Flash memory [0 > 1|1 2 1]
¢ Accurate fault model relevant for LFI

+* Explained and demonstrated for NOR-Flash memory of Cortex-M MCU by Colombier et al. !

Target & Laser bench

** ARM Cortex-M3 (90nm CMOS) | 8 MHz | 128 kB of Flash memory | Chip = 3 x 2.5 mm

+* For LFI: MCU packaging is opened (engraving tools, acid...)

+* Double spots laser platform
*¢* Near infrared (IR), A=1, 064 nm, Laser spot diameter [1.5 - 15] ym. Max power = 1, 700mW.
+* Delay (trigger/shot) = few nanoseconds

** Infrared camera

2 (1) Colombier, et al. Laser-induced Single-bit Faults in Flash Memory..., IEEE HOST 2019.
.iii.
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Assumptions & Experimental Setups
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Assumptions & Experimental Setups ) &

Datasets & Models

+** Cortex M3 with high memory constrains
+*¢* Work with 8-bits quantized models
+* Deployment: open-source platform NNoM: Neural Network on Microcontrollers
+** Use of a Multilayer-Perceptron (MLP) trained on MNIST
+* Input compression on R>° (PCA)

+* 1 hidden layer with 10 neurons
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+* 1 output layer with 10 neurons
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What, when, where to shoot?

Strike parameters stored in Flash memory

¢ Flash Memory = Model architecture and internal parameters

*** SRAM => intermediate calculations (e.g., activations)

Neuron =» weighted sum

e 2
[ while (rowCnt){ | 11 597_t inB = *pB++ ;Weight n+1
2 //pA : address, stored input _ Ledialosaio s . .
3 //pB : address, stored weight 2(p r3, [z7, #80] .,Loadlng pes
4 for (int j = 0; j < dim_vec; j++) address of the weight n .
{ //loop on all neuron 3| adds r2, r3, #1 ; Next weight

parameters Ldmeas )

5 q7_t inA *DA++; //1load ‘ 4| str ;2, [?7, #80] ; Input value
input to inA, address increment loading into 12 reg )

, . ldrsb.w r3, [r3] ;Weight value

6 gq7_t inB *pB++; //load : _
ng’weight to inB, address increment LatnEn . Lot SR

oy

- ip_out += inA * inB; //neuron 6| strb r3, [r7,#23] :Store of the

weighted sum weight in SRAM reg )
-

8 } t

9 *p0++ = (q7_t)__NNOM_SSAT ((ip_out Assembly code, of line 6
>> out_shift), 8); ¢

10 rowCnt --;}

\ J

@ C code, weighted-sum in a dense layer



What, when, where to shoot?

Mapping the Flash memory

** First experiment with a 4-weight neuron = alter all the bits following the bit-set model

e0>1//1->1
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What and where to shoot?

Target a MLP model

** Brute-Force approach

Shooting along the bit-lines

Sk k%

=> target all the bit from all the weights 100
80 A fw L\/
** MLP model = 4960 bits
¢ By targeting 1 bit line at a given X-position of the _
X 60 -
laser, only weights on the same address column > \ ‘
©
are faulted with a bit-set 3
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< 40
+* Significant accuracy drops for MSB locations *
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Combining LFI and simulation

Advanced Guided-LFI

¢ Brute-Force strategy is impractical with deeper models

*¢* IDEA: adapt the BFA principle to our fault model = BSCA = Bit-Set Constrained Attack

+»* Target model M. W weights matrix. Adversarial budget S (max number of faults)
¢ FOR EACH weight column index c, bit line index b

*** #1. BFA ranks the most sensitive bits of W according to 7, £

*** #2. Exclude the bits already set to 1 and not related to ¢ and b.

** #3. Pick the best bit-set and perform the fault permanently in M.

*** #4. Repeat the process until reaching S

¢ Repeat over ¢c and b & KEEP WORST ACCURACY

20



Combining LFI and simulation

Advanced Guided-LFlI
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How practical LFI fit with simulations (BSCA)?

—— Laser Fault Injection
—— Simulation-based
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Discussions & conclusion

Exploiting Fault Injection for Confidentiality Threats

*** BFA + RowHammer for model extraction scenario =» extract partial parameter values!
*** We demonstrated Model Extraction with the BSCA
** ESORICS / SECAI Workshop?
+* Basic idea: Safe Error Attack principle = guess bit value whether the fault changes the

prediction or not (w.r.t. the normal behavior)

** Model complexity is not such a problem =» complexity of Flash memory is the big challenge
+* Further experiments need to be focused on other targets (e.g., Cortex M4 and M7)

** When to shoot = smart trigger with side-channel analysis?

'iTi' (1) Rakin, et al. DeepSteal. IEEE S&P 2022
(2) Hector, et al. Fault Injection and Safe-Error Attack for Extraction of Embedded Neural Network Models. ESORICS/SECAI 2023.
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Discussions & conclusion

Maturity of Parameter-based Attacks

*»* Parameter-based attack still lacks of maturity
¢ SotA: limitations, improvements, alternatives

+¢* Future works =» considering or combining more attack methods to improve evaluation

Extend to practical evaluation of protections

+** Are generic countermeasures against fault injection relevant?

+* Practical evaluation of specific BFA-oriented defenses

+** weight clipping, clustering-based quantization, code-based detectors, adv training...
+** As for adversarial examples, the definition of sound evaluations of defenses is highly important to

disseminate security guidance & future certification actions
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