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The Software Stack

• The modern software stack is one of 
mankind’s greatest engineering 
achievements

• With a few keystrokes, we can send 
email, make video calls, edit images, 
operate factories, control air traffic, and 
manage sensitive data. 

• But this power comes with a price: a 
large attack surface where bugs can 
have serious consequences.

• Estimated engineering cost of software 
errors for the US is around 2.41T $/year.

• Cybercrime is seen as a 6T$/year 
problem, and growing

https://appvance.com/wp-content/uploads/Software-Stack.001.jpeg
https://www.synopsys.com/blogs/software-
security/poor-software-quality-costs-us/ 2
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What Makes Software Weird?
• Unlike other engineering artifacts, software supports 

greater flexibility, resiliency, and versatility in the design 
and maintenance of a system

• However, software can be a significant source of system 
failure due to bugs and security vulnerabilities - even a 
small design, coding error, or malicious modification can 
have big consequences

• Software applications tend to be sui generis - we lack a 
mature engineering discipline of principled software 
construction

• Attackers can relentlessly probe software for vulnerabilities 
and compromise security and reliability

• The resulting attacks can wreak havoc on a global scale

• To secure the software supply chain, we need to invest in 
design and composable assurance, and not band-aids.
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• AT&T Cascading Failure
• Intel FDIV bug 
• Ariane-5 launch 
• Patriot Missile bug 
• Northeast blackout
• Obamacare web site 
• OpenSSL RNG
• OpenSSL Heartbleed
• Therac-25 
• Boeing 737 MAX-8 
• Mars Climate Orbiter
• Apple Maps
• Windows Genuine Advantage

A Few Celebrity Bugs

Cost Overruns

• FAA Advanced Automation 
System (>$3B)

• HealthCare.gov ($1.5B vs 
93M)



What can go wrong? 
• Software-intensive systems must possess a 

stringent suite of virtues spanning 
functionality, performance, reliability, 
robustness, resilience, persistence, security, 
and maintainability.

• For safety, the design must mitigate all 
possible hazards, conditions for potentially 
dangerous events (fires, crashes, societal 
collapse) caused by failure(s).

• A failure is a deviation from the intended 
behavior caused by errors in the functioning 
of one or more components, due to faults
such as a bad or missing check in the 
software.

• Failures can arise from a combination of many 
sources: poor regulation, inept management, 
incomplete/ambiguous requirements, bad 
design, defective engineering, inadequate 
maintenance, and improper operation. 

https://www.isixsigma.com/industries/software-
it/defect-prevention-reducing-costs-and-enhancing-
quality/

The cost of finding/fixing faults rises dramatically 
through the software development lifecycle.
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Software-Related Risks
Channel Instances

Hardware Intel FDIV, Spectre/Meltdown, 

Side Channel Power, timing, radiation, wear-and-tear (Row Hammer)

Calculation NASA Mariner, Mars Polar Lander, Mars Climate Orbiter, Ariane-5

Memory/Type Buffer Overflow, null dereference, use-after-free, bad cast

Crypto SHA-1, MD5, TLS  Freak/Logjam, Needham-Schroder, Kerberos

Input Validation SQL/Format string, X.509 certificates, Heartbleed

Race/Reset condition Therac-25, North American Blackout, AT&T crash of 1990, Mars Pathfinder

Code injection/reuse Shell injection, Return-oriented Programming, Jump-oriented programming

Provenance/Backdoor Athens Affair, Solar Winds

Social Engineering Phishing, Spear Phishing, phone/in-person exploits
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Software-Related Risks: The Enemy is Us
Channel Instances

Hardware Intel FDIV, Spectre/Meltdown, 

Side Channel Power, timing, radiation, wear-and-tear (Row Hammer)

Calculation NASA Mariner, Mars Polar Lander, Mars Climate Orbiter, Ariane-5

Memory/Type Buffer Overflow, null dereference, use-after-free, bad cast

Crypto SHA-1, MD5, TLS  Freak/Logjam, Needham-Schroder, Kerberos

Input Validation SQL/Format string, X.509 certificates, Heartbleed

Race/Reset condition Therac-25, North American Blackout, AT&T crash of 1990, Mars Pathfinder

Code injection/reuse Shell injection, Return-oriented Programming, Jump-oriented programming

Provenance/Backdoor Athens Affair, Solar Winds

Social Engineering Phishing, Spear Phishing, phone/in-person exploits
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What then shall we do?
• Many vulnerabilities are consequences of original sins: conflating call and 

variable stacks, stack abuse, broken abstractions, weakened protections, 
etc.  Expiating these sins must be a priority.

• Formal modeling and analysis is practical and even necessary, but not a 
panacea

• Software should be designed hand-in-hand with assurance artifacts that 
are verifiable by clients (or trusted third parties)

• Design for assurance must be based on efficient (fail-big, fail-easy) 
compositional arguments with low amortized certification cost 

• Software designs ought to be centered around software architectures 
(formal models of computation & interaction) that deliver efficient 
arguments for isolation and composition

• Software development workflows must capture design refinements while 
maintaining the associated claims and evidence (the value proposition).
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The RAF Nimrod XV230 Accident
• On 2 September 2006, RAF Nimrod  XV230 

“suffered a catastrophic mid-air fire" while 
flying in Helmand province, Afghanistan. 

• All fourteen people aboard the plane died. 

• The fire happened 90 seconds following air-
to-air refuelling (AAR).

• The cause of the fire was a fuel leak around 
the AAR that was ignited by contact with an 
exposed (due to frayed/inadequate 
insulation) element of the cross-feed (CF) 
duct (1969-75) and Supplementary 
Conditioning Pack (SCP) duct (1979-84) that 
transported hot (470 deg. C) air.
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What went wrong?

• The Nimrod, developed from the de Havilland Comet, had been flying 
since 1969 but the AAR was added by BAE first in 1982 and upgraded 
in 1989, and certified on the basis of a safety case developed by BAE 
(with QinetiQ as an independent reviewer) during 2001-2004.

• The Haddon-Cave report observed that the cross-feed duct was 
placed dangerously close to a fuel tank:
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As a matter of good engineering practice, it would be extremely unusual (to put it no higher) 
to co-locate an  exposed source of ignition with a potential source of fuel, unless it was 
designated a fire zone and provided with commensurate protection. Nevertheless, this is what 
occurred within the Nimrod.



Haddon-Cave on the Nimrod Safety Case

• Unfortunately,  the  Nimrod  Safety  Case  was  a  lamentable job  from  start  to  finish.  
It  was  riddled  with errors. It   missed the key dangers. Its production is a story of 
incompetence, complacency, and cynicism.

• The  Nimrod  Safety  Case process was fatally undermined by a general malaise: a 
widespread assumption by those involved that the Nimrod was ‘safe anyway’ (because it 
had  successfully flown for 30 years) and the task of drawing up the Safety Case became 
essentially a paperwork and ‘tick-box’ exercise.
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• A  Safety  Case  itself  is  defined  as ``a  structured  argument, supported by a body of 
evidence, that provides a compelling, comprehensible and valid case that a system is safe 
for a given application in a given environment’’.

• The basic aims, purpose and underlying philosophy of Safety Cases were clearly defined, 
but there was limited practical guidance as to how, in fact, to go about constructing a 
Safety Case.  … If the Nimrod Safety Case had been properly carried out, the loss of 
XV230 would have been avoided.



Evidence-Based Assurance

FDA Draft Guidance document Total Product Life 
Cycle: Infusion Pump - Premarket Notification 
[510(k)] Submissions: … an assurance case is a 
formal method for demonstrating the validity of a 
claim by providing a convincing argument 
together with supporting evidence. It is a way to 
structure arguments to help ensure that top-level 
claims are credible and supported. In an assurance 
case, many arguments, with their supporting 
evidence, may be grouped under one top-level 
claim. For a complex case, there may be a complex 
web of arguments and sub-claims. 

Gold components are verified; Green 
ones are assumptions/models 
supported by empirical evidence.
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Adelard describes an assurance case as ``a 
documented body of evidence that provides a 
convincing and valid argument that a specified set 
of critical claims about a system's properties are 
adequately justified for a given application in a 
given environment.’’ 



Software Assurance

• Since software is a source of catastrophic bugs 
and vulnerabilities, it must be certified as being 
fit for its intended purpose prior to deployment

• An assurance case captures the rationale for the 
claim that the software is fit for its intended 
purpose.

• There are numerous assurance case 
guidance/standards: IEC 62304, ISO 26262, MIL-
STD-882E, SAE ARP4754/ARP4761, RTCA DO-
178C, DO-326, DO-355/356.

• Counter to process-based standards,  Overarching 
Properties (OP) takes a property-based approach 
focusing on intent, correctness, and innocuity.  

12https://en.wikipedia.org/wiki/DO-178C - /media/File:DO-178C_Traceability.png
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The Possibility of Perfection
• Software and hardware behavior can be 

modeled with mathematical precision.
• Software can, in principle, be provably 

engineered to perfection (modulo messy 
reality) given accurate specifications.

• Building accurate models, capturing 
requirements, and crafting specifications 
are critical challenges for software. 

• Even so, the strategic deployment of 
lightweight and heavyweight analysis 
techniques can yield huge dividends.

• The main bottleneck is design, and even 
verified software can be poorly designed.

• CLinc verified stack (1989)
• SPARK/Ada verification of avionics, 

medical device, air traffic control, crypto 
software

• NASA Langley verification of air traffic 
control algorithms/software (2004)

• NRL Separation Kernel (2007)
• CompCert verified compiler for subset 

of C (2008)
• Intel i7 processor verification (2009)
• seL4 microkernel verification (2010)
• Airbus 340 & 380 avionics software 

(2010)
• CakeML hardware/software stack (2014)
• Everest verified HTTPS, TLS code (2017)

Formal Verification Milestones

13



On Design

• A design is a blueprint for the construction and 
operation of a system or artifact.

• The design can be decomposed into what is 
fixed: structure and semantics, and what is 
allowed to vary and how: dynamics.
• Structure specifies the architecture (components, 

interfaces, and bindings) of a specific design.
• Semantics specifies how the individual components 

act and interact.
• Dynamics specify the (time-varying) variables in the 

systems.

• For critical systems, the end goal of a design 
process should be more than a blueprint
• It should include an argument supported by evidence 

as to why the design meets its objectives.

14https://www.universostartrek.com/USS-Enterprise-NCC-1701-D-Top-View.jpg
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On Argument

• An argument for a system is a tree of 
claims, subclaims, and assumptions.

• An assurance case is a theory-supported 
structured argument with claims, 
subclaims, and assumptions backed by 
artifacts and evidence, that demonstrates 
that the software faithfully implements the 
intended behavior.

• The assumptions, e.g., on the environment 
or sensors, are supported by evidence.

• The refinement of claims into subclaims 
should be backed by a theory (with its own 
supporting evidence).

15

Claim

Theory

Evidence

SubclaimSubclaimAssumption

Evidence



Making Arguments Efficient (for the skeptic)
• An efficient argument is one whose 

flaws, if any, can be easily identified by a 
skeptic.

• A good design should support an 
efficient argument that expands the 
falsification space for the skeptic.

• Efficiency is measured by the amortized 
cost of falsification.

• Inefficient arguments are hard to falsify 
for a number of reasons: imprecise 
claims, unfalsifiable assumptions, 
complex technical arguments, flawed or 
irrelevant evidence, invalid chain of 
reasoning, leaps of faith, improper 
tracking of change. 
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https://pics.onsizzle.com/has-is-you-want-proof-ill-give-you-proof-6076357.png
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Design for Efficient Arguments
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Efficient arguments use
• Precise Claims
• Valid models and assumptions
• Reusable design tools/artifacts
• Architectural separation of concerns
• Rigorous chain of reasoning and evidence

https://i.pinimg.com/736x/d6/e7/54/d6e754d24aaef324c1595e68583ace7a.jpg

• Models (plant, environment, sensor, 
actuator, operator, platform, fault), 
Architectures, Languages, and Tools are the 
pillars of efficient arguments

• Efficient arguments lower the amortized 
falsification cost through big, reusable 
claims that expand the falsification space.

All models are 
wrong, but some 
are useful.  

George E.P. Box

https://i.pinimg.com/736x/d6/e7/54/d6e754d24aaef324c1595e68583ace7a.jpg


Designing for Efficiency

• Assurance-driven workflow for 
continuously/incrementally capturing evidence 
during design 
• No gaps in the chain of evidence. 

• Property-directed assurance (in contrast to 
process-based assurance) 
• Software failure can be directly traced to 

property violation.

• Architecture based on a rigorous model of 
computation and interaction 
• Model offers high-level guarantees that are 

reusable over multiple designs.

• Separation of logical and physical architecture 
• Logical architecture is reusable, easy to check 

that physical architecture meets logical 
assumptions.
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• Component contract specifications 
• Behavioral properties are established from 

architecture and component contracts.
• Abstract component models 

• Strong semantics + easier proofs.
• Static analysis for generic properties (e.g., 

absence of runtime errors) 
• Amortized cost of using type system or 

analyzer.
• Ontic type analysis for consistent data 

representation and use
• Efficient check for ontic mismatches.

• Automatic code generation from models
• Generator is reusable and easily verified.



Property-Directed Assurance
The Eight-Variables Model
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EnvironmentAssumption(environment) AND
PlantModel(environment, control, pose, monitor) AND 
SensorAccuracy(monitor, input) AND
ActuatorResponse(output, control) AND
ControllerSpecification(input, command, 

output, display) AND
OperatorModel(display, command)
IMPLIES 
Requirement(command, environment, pose, display)

The Controller Specification can be seen as the High-
Level Requirement (HLR) on the software. 



8-Variables: An Example

20

• The Plant consists of the vehicle that is 
trying to maintain a speed v and the 
Environment e is the grade of the road.

• The goal requirement is to maintain the 
vehicle velocity v within some bound of the 
target velocity u. 

There are other ways to decompose the interaction: 
• Operator as part of the World
• Actuator and Sensor as part of the Plant
• Actuator and Sensor as part of the Controller



Radler Architecture for Efficient Arguments
Requirements: 

Maintain room 
temperature between 

min and max.

Assumptions:
Leakage rate, heater, sensor 

accuracy.

Logical Radler Architecture: 
Sensor + Controller + Console 

+ Safety Monitor +
Channel Latencies

Physical architecture:
Machines, VMs, OS, 

Transport, Configuration

Code 
Components

• Assumptions + Architecture => Requirements
• Architecture = Logical Arch. + Physical Arch.
• Logical Architecture = Nodes + Channels + Timing
• Node = Step function contract + Mailboxes + Period
• Physical Architecture => Logical Arch. Assumptions
• Code => Step function contract + WCET bounds

Radler logical architecture 
guarantees
• Message ordering
• Bounded/zero message loss
• End-to-end latency bounds
• Failure warnings
• No DoS attacks
• Partitioning

Node

A Node

C

Node 

B
Mailbox: bounded 

FIFO and non-

blocking

[delaymin, 

delaymax]

[periodAmin, 

periodAmax]

[periodBmin, 

periodBmax]

zero 

logical 

execution 

time

[periodCmin, periodCmax]

21https://github.com/SRI-CSL/radler/

Radler build process ensures the architectural integrity of executables.

https://github.com/SRI-CSL/radler/


DesCert Approach: Ontology for Safety and Security Assurance
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1. Without a rigorous ontology, the claims and chain of 
evidence in an assurance case can be ambiguous and 
misleading.  

2. Honeywell’s CLEAR language is used to capture both 
requirements and ontology elements and their relationships  
to create corresponding evidence sets and reasoning for 
direct construction of Assurance Claims.

E.g.: Threat A1’s exploiting of vulnerabilities (v1, v2) is blocked due to 
controls (c1, c2, c3) present (with associated property results) in the 
architecture (radl1) in software components (s1, s2).

CLEAR – Constrained Language Enhanced Approach to Requirements

1. 3. Ontological categories for modeling of: 
1. Threats1: Weak access control, weak input validation, race 

conditions, timing attacks, phishing, privilege escalation
2. Vulnerabilities2: Null dereference, SQL injection, Buffer 

overflow
3. Controls3: Physical security, Access control, Monitoring, 

Reporting, Authentication
4. Risk/loss events4: Loss of Confidentiality, Integrity, 

Availability, Safety.
5. Architecture/Touch (entry) Points: Sensors, Actuators, 

Communication channels, Files, Hardware

Threat Entry Point Risk Mitigation

Malicious Code Build Process Failure, Unauthorized Access Radler Certified Build/Attestation

Malicious Inside Actor Untrusted Code DoS, Failure, exfiltration/infiltration Radler Security Enclaves

Loss of Information Integrity Tampering Failure Radler Security Enclaves

Loss of Comm. integrity Communication layer Infiltration, Exfiltration, Jamming Radler/SROS2 protections

Access Control Violation Architecture Failure, Unauthorized Access Radler config., Ontic analysis

Bad/Unexpected Input Unchecked input ports Failure/Remote Code Execution Ontic Type Analysis



Hazard 

1..*

Attacker

Access 

Vectors

creates

Vulnerability

exploits

Exploitation

uses

1..*

Threat

Condition Architectural

Controls

1..*

mitigatedBy

causes

Property

• Architectural design protection (partitioning, 
enclaves, encryption, secure DDS, resource/ 
timing guarantees)

• Requirements/design analysis, model check 
properties, graph semantics analysis

• Protection via type safety and ontic-type-
based static code analysis

• Testing: requirements-based, threat-based

Threat

Event triggers
Loss

Event

Risk

Event

isManifestedBy

Property

1..*

mitigatedBy

1..* Legend
Security related (Phase 2)

Safety related (Phase 1)

DesCert Evidence Ontology for Integrated Security/Safety Analysis 

CAPEC

NIST

800-53

Mitre CWE

Architecture

Touch Points

Property

Result

demonstrates

Analysis

Output

supportedBy

scope

scope

Analysis

Activity

E.g., Checker 
Framework 
execution

Activity

Claim

declares
1..*
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Ontic Type Analysis
• Basic types in programming language (such as int, struct, array) 

abstract from the representation of the data 
• They are insensitive to the intended use of the data, e.g., an authenticated 

user ID, a private encryption key, the vertical acceleration of a vehicle in 
m/sec2, an IP address, a URL, or an SQL query.

• Ontic type analysis (see Checker Framework from U.Washington) checks for 
the proper usage of data in terms of units/dimensions, freshness, nullity, 
mutability, taint, authentication, privacy, format validity, and provenance.

• Ontic typing can be viewed as information flow analysis on ghost data.

char input[30];
int response;
scanf("%s", input);
sqlstmt = "select␣*␣from␣employees␣where␣id␣=␣" + input + ";"; 
response = sqlite3_exec(db, sqlstmt, ...); 



Generating Safe Code From Models
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• SRI’s Prototype Verification System (PVS) is an 
interactive proof assistant built and 
maintained over the last thirty years 

• Almost all of the specification language is 
executable as a safe functional language

• Executable PVS specifications can be mapped 
to Common Lisp , C, Rust, and oCaml.

• The generated C is safe (free of uninitialized 
variables, null dereferences, out-of-bounds 
accesses, division-by-zero).

• It is also comparable in efficiency to hand-
crafted code due to the use of reference 
counting and in-place updates.

hsummation: THEORY

BEGIN

i, m, n: VAR nat

f: VAR [nat -> nat]

hsum(f)(n): RECURSIVE nat =

(IF n = 0 THEN 0 ELSE f(n - 1) + hsum(f)(n - 1) 

ENDIF)

MEASURE n

id(n): nat = n

hsum_id: LEMMA hsum(id)(n + 1) = (n * (n + 1)) / 2

square(n): nat = n * n

sum_of_squares: LEMMA

6 * hsum(square)(n + 1) = n * (n + 1) * (2 * n + 

1)

cube(n): nat = n * n * n

sum_of_cubes: LEMMA 

4 * hsum(cube)(n + 1) = n * n * (n + 1) * (n + 

1)

quart(n): nat = square(square(n))

sum_of_quarts: LEMMA

hsum(quart)(n + 1) =

((6 * (n ^ 5)) + (15 * (n ^ 4)) + (10 * (n ^ 3)) 

- n) / 30



Key Derivation in PVS: HMAC
function hmac is

input:
key:        Bytes    // Array of bytes
message:    Bytes    // Array of bytes to be hashed
hash:       Function // The hash function to use (e.g. SHA-1)
blockSize:  Integer  // The block size of the hash function 

//(e.g. 64 bytes for SHA-1)
outputSize: Integer  // The output size of the hash function 

//(e.g. 20 bytes for SHA-1)

// Keys longer than blockSize are shortened by hashing them
if (length(key) > blockSize) then

key ← hash(key) // key is outputSize bytes long

// Keys shorter than blockSize are padded to blockSize by padding 
//with zeros on the right
if (length(key) < blockSize) then

key ← Pad(key, blockSize) // Pad key with zeros to make it
// blockSize bytes long

o_key_pad ← key xor [0x5c * blockSize]   // Outer padded key
i_key_pad ← key xor [0x36 * blockSize]   // Inner padded key

return hash(o_key_pad ∥ hash(i_key_pad ∥ message))

hmac(blockSize: uint8,

key : bytestring,

(message : bytestring | message`length + blockSize < bytestring_bound

outputSize: upto(blockSize),

hash: [bytestring->lbytes(outputSize)]): lbytes(outputSize

= LET newkey = IF length(key) > blockSize THEN hash(key) ELSE key ENDIF,

newerkey: lbytes(blockSize)

= IF length(newkey) < blockSize

THEN padright(blockSize)(newkey)

ELSE newkey

ENDIF, 

oKeyPad = lbytesXOR(blockSize)(newerkey, nbytes(0x5c, 

iKeyPad = lbytesXOR(blockSize)(newerkey, nbytes(0x36, 

IN hash(oKeyPad ++ hash(iKeyPad ++ message))

hmac256((blockSize: uint8 | 32 <= blockSize),

key : bytestring,

(message : bytestring | 

message`length + blockSize < bytestring_bound

: lbytes(32)

= hmac(blockSize, key, message, 32, sha256message)

• HMAC is a higher-order operation with complex type 
dependencies (not specified in the pseudocode)

• These dependencies are accurately captured in PVS
• C code generation is bit-accurate

From https://en.wikipedia.org/wiki/HMAC
26

https://en.wikipedia.org/wiki/HMAC


Evidential Tool Bus (ETB2)[SRI/fortiss]
• The Evidential Tool Bus (ETB) is a distributed tool 

integration framework for constructing and 
maintaining claims supported by arguments based 
on evidence generated by static analyzers, dynamic 
analyzers, satisfiability solvers, model checkers, and 
theorem provers. 

• Key ideas are:
• Datalog as a metalanguage
• Denotational and operational semantics 
• Interpreted predicates for tool invocation, and 

uninterpreted predicates for scripts
• Datalog inference trees as proofs
• Git as a medium for file identity and version 

control 
• Cyberlogic, a logic of attestations, to 

authenticate the claims and authorize the 
services

https://github.com/SRI-CSL/ETB2
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allsat(F, Answers) :- sat(F, M), negateModel(F, M, NewF), 
allsat(NewF, T), cons(M, T, Answers). 

allsat(F, Answers) :- unsat(F), assign("nil",Answers). 
sat(F, M) :- yices(F, S, M), equals(S, "sat"). 
unsat(F) :- yices(F, S, M), equals(S, "unsat").

https://github.com/SRI-CSL/ETB2


Evidential Transactions on ETB

28



Summing up

• Design is the key to building software that is demonstrably safe, reliable, 
and secure software.
• Open Problem: Shift the locus of software design from code to models. 

• Designs based on efficient arguments makes certification easier and more 
reusable.
• Open Problem: Quantify efficiency by assessing relative certification cost, 

confidence, and amortization gain of different design choices

• Concrete ways of achieving efficiency include formal architectures, certified 
build systems, well-defined property/evidence ontologies, strong typing 
(including ontic types), code generators, and assurance-directed 
workflows. 
• Open Problem: Create a fully formal pipeline for continuous development/assurance.
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Securing the Software Universe
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• Software processes information: bank accounts, grades, medical records, books, videos, power grid 
controls, avionics, and medical devices

• Code is a poor representation of design: untrusted code should not be the input, trusted code should 
be the output

• Shotgun composition of code without a well-defined formal architecture will fail

• So,

• Take information seriously: annotate the artifacts with ontic type information

• Take requirements seriously: many major flaws are traceable to poor requirements

• Take architecture seriously: the keystone of an efficient argument

• Take assurance seriously: composable evidence should be the coin of the realm

• Take the assurance ontology seriously: it binds the claims to the evidence

• Take inline and independent runtime monitoring seriously: track integrity of assumptions

• Re-engineer the platforms to root out the sins of our ancestors

• Build workflows that create and maintain evidence as part of the design flow

• Integrate attestation into the evidence as a foundation for trust



A Software Proof of Virtues (SPOV)

• Software is a core mediator of our perception of truth

• Software failures and cyber-attacks weaken trust

• The current strategy of applying larger and larger band-aids is only fueling an 
arms race

• We have the tools and insights to build the infrastructure of trust in software 
from the ground up: 
• Software development lifecycle workflows that continuously maintain both process and 

outcome-based assurance evidence
• Tools and models that support designs annotated with traceable ontic information that 

are founded on efficient arguments
• Verified platforms and services whose integrity is certified by audit logs and audits 
• Composable assurance cases validating intent, correctness, and innocuity
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